Domestic pig head and neck arteries from the viewpoint of imaging methods and experimental surgery
Authors:
L. Eberlová 1,2; H. Mírka 2; V. Liška 2,3
Authors‘ workplace:
Ústav anatomie, Lékařská fakulta Univerzity Karlovy v Plzni
1; Biomedicínské centrum, Lékařská fakulta Univerzity Karlovy v Plzni
2; Chirurgická klinika, Fakultní nemocnice Plzeň
3
Published in:
Rozhl. Chir., 2022, roč. 101, č. 12, s. 571-576.
Category:
Review
doi:
https://doi.org/10.33699/PIS.2022.101.12.571–576
Overview
The aim of this paper is to summarize the current knowledge of the anatomy of domestic pig head and neck arteries for the needs of experimental surgery and imaging methods in biomedical research and translational medicine. The potential of this large animal model seems to be valuable also for the xenotransplantation of certain organs. Demands for the knowledge of morphological differences between analogous human structures and particular breeds are growing also in connection with the need for more precise planning of experiments or interpretation of the results. Deepening anatomical knowledge is allowed also by the development of imaging methods. The search was performed using the keywords “domestic pig” and “arteries of the head and neck“ in the MEDLINE database, PubMed interface.
Keywords:
domestic pig – arteries of the head and neck – veterinary anatomy
Sources
1. Tsang HG, Rashdan NA, Whitelaw CBA, et al. Large animal models of cardiovascular disease: Cardiovascular disease models. Cell Biochem Funct. 2016;34(3):113–132. doi:10.1002/cbf.3173.
2. Ioannidis JPA, Greenland S, Hlatky MA, et al. Increasing value and reducing waste in research design, conduct, and analysis. Lancet Lond Engl. 2014;383(9912):166–175. doi:10.1016/ S0140-6736(13)62227-8.
3. O’Leary JD, Crawford MW. Review article: reporting guidelines in the biomedical literature. Can J Anaesth J Can Anesth. 60(8):813–821. doi:10.1007/s12630-013- 9973-z.
4. Popesko P. Anatómia hospodárskych zvierat. Príroda 1992:40–50(a),239–425(b).
5. König HE, Liebich HG. Anatomie domácích savců 1. Bratislava, H&H 2002: 72–89.
6. König HE, Liebich HG. Anatomie domácích savců 2. Bratislava, H&H 2002:169–181(a), 232–246(b).
7. Edwards J, Abdou H, Patel N, et al. The functional vascular anatomy of the swine for research. Vascular 2021; 1708538121996500.
8. Góes AM de O, Chaves RH de F, Furlaneto IP, et al. Comparative angiotomographic study of swine vascular anatomy: contributions to research and training models in vascular and endovascular surgery. J Vasc Bras. 2021;20:e20200086.
9. WAVA. Documents and publications of WAVA. Available at: http://www.wava- amav.org/wava-documents.html.
10. Daniel PM, Dawes JDK, Prichard MML, et al. Studies of the carotid rete and its associated arteries. Philos Trans R Soc Lond B Biol Sci. 1953;237(645):173–208.
11. Thim T. Human-like atherosclerosis in minipigs: a new model for detection and treatment of vulnerable plaques. Dan Med Bull. 2010;57(7):B4161.
12. Tomášek P, Tonar Z, Grajciarová M, et al. Histological mapping of porcine carotid arteries – An animal model for the assessment of artificial conduits suitable for coronary bypass grafting in humans. Ann Anat Anat Anz Off Organ Anat Ges. 2020;228:151434. doi:10.1016/j. aanat.2019.151434.
13. Graczyk S, Zdun M. The structure of the rostral epidural rete mirabile and caudal epidural rete mirabile of the domestic pig. Folia Morphol. 2022. doi:10.5603/ FM.a2022.0013.
14. Mangla S, Choi JH, Barone FC, et al. Endovascular external carotid artery occlusion for brain selective targeting: a cerebrovascular swine model. BMC Res Notes 2015;8:808. doi:10.1186/s13104- 015-1714-7.
15. Massoud TF, Ji C, Viñuela F, et al. An experimental arteriovenous malformation model in swine: anatomic basis and construction technique. AJNR Am J Neuroradiol. 1994;15(8):1537–1545.
16. Khamas WA, Ghoshal NG. Gross and scanning electron microscopy of the carotid rete-cavernous sinus complex of the sheep (Ovis aries). Anat Anz. 1985;159(1– 5):173–179.
17. Reinert M, Brekenfeld C, Taussky P, et al. Cerebral revascularization model in a swine. Acta Neurochir Suppl. 2005;94:153–157.
18. Gobin YP, Murayama Y, Milanese K, et al. Head and neck hypervascular lesions: embolization with ethylene vinyl alcohol copolymer – laboratory evaluation in swine and clinical evaluation in humans. Radiology 2001;221(2):309–317. doi:10.1148/radiol.2212001140.
19. Arakawa H, Murayama Y, Davis CR, et al. Endovascular embolization of the swine rete mirabile with Eudragit-E 100 polymer. AJNR Am J Neuroradiol. 2007;28(6):1191–1196. doi:10.3174/ajnr. A0536.
20. De Salles AA, Solberg TD, Mischel P, et al. Arteriovenous malformation animal model for radiosurgery: the rete mirabile. AJNR Am J Neuroradiol. 1996;17(8):1451– 1458.
21. Aburto-Murrieta Y, Dulce BD. Asymptomatic carotid rete mirabile and contralateral carotid agenesis: a case report. Vasc Endovascular Surg. 2011;45(4):361– 364. doi:10.1177/1538574411401760.
22. Li G, Jayaraman MV, Lad SP, et al. Carotid and vertebral rete mirabile in man presenting with intraparenchymal hemorrhage: a case report. J Stroke Cerebrovasc Dis Off J Natl Stroke Assoc. 2006;15(5):228–31. doi:10.1016/j.jstrokecerebrovasdis. 2006.05.005.
23. Rockett JF, Johnson TH. Bilateral rete mirabile intracranial (vascular) anastomosis in man. A case report. Radiology 1968;90(1):46–48.
24. Baljit S. Dyce, Sack, and Wensing‘s textbook of veterinary anatomy. 5th edition, Elsevier 2016:220–234,299.
25. Morén H, Gesslein B, Undrén P, et al. Angiography and multifocal electroretinography show that blood supply to the pig retina may be both ipsilateral and contralateral. Invest Ophthalmol Vis Sci. 2013;54(9):6112–6117. doi:10.1167/ iovs.13-12376.
26. Morén H, Gesslein B, Undrén P, et al. Endovascular coiling of the ophthalmic artery in pigs to induce retinal ischemia. Invest Ophthalmol Vis Sci. 2011;52(7):4880– 4885. doi: 10.1167/iovs.11-7628.
27. Sasaki R, Watanabe Y, Yamato M, et al. Surgical anatomy of the swine face. Lab Anim. 2010;44(4):359–363. doi:10.1258/ la.2010.009127.
28. Eberlová L, Tonar Z, Witter K, et al. Asymptomatic abdominal aortic aneurysms show histological signs of progression: a quantitative histochemical analysis. Pathobiol J Immunopathol Mol Cell Biol. 2013;80(1):11–23. doi:10.1159/000339304.
29. Houdek K, Moláček J, Třeška V, et al. Focal histopathological progression of porcine experimental abdominal aortic aneurysm is mitigated by atorvastatin. Int Angiol J Int Union Angiol. 2013;32(3):291–306.
30. Nedorost L, Uemura H, Furck, et al. Vascular histopathologic reaction to pulmonary artery banding in an in vivo growing porcine model. Pediatr Cardiol 2013;34(7):1652–1660. doi:10.1007/ s00246-013-0699-z
31. Bunte MC, Shishehbor MH. Next generation endovascular therapies in peripheral artery disease. Prog Cardiovasc Dis. 2018;60(6):593–599. doi:10.1016/j. pcad.2018.03.003.
Labels
Surgery Orthopaedics Trauma surgeryArticle was published in
Perspectives in Surgery
2022 Issue 12
Most read in this issue
- Domestic pig head and neck arteries from the viewpoint of imaging methods and experimental surgery
- Chylothorax treatment with thoracic duct embolization
- Introducing in vivo pancreatic cancer models for the study of new therapeutic regimens
- Permanent intravenous access in experimental surgery – our experience