Nutritional support in the early stage of critical illness – focused on energy and protein intake
Authors:
Roman Kula 1,2; Roman Kula Jr 3,4; Daniela Charwátová 4,5; Tatiana Sušková 6
Authors‘ workplace:
Klinika anesteziologie, resuscitace a intenzivní medicíny LF OU a FN Ostrava
1; Katedra intenzivní medicíny, urgentní medicíny a forenzních oborů LF OU Ostrava
2; Klinika dětské anesteziologie a resuscitace, LF MU a FN Brno
3; Fyziologický ústav LF MU Brno
4; Chirurgické oddělení, Nemocnice Vyškov
5; Oddelenie anesteziológie a intenzívnej medicíny, Nemocnica Humenné, Slovensko
6
Published in:
Vnitř Lék 2021; 67(1): 43-48
Category:
Overview
The aim of this article is to emphasize the importance of taking into account the mechanism of host's response to insult when choosing a nutritional strategy in the early phase of a critical illness. At the same time, the article discusses the risks associated with early aggressive nutritional intervention for both energy and protein intake. Today, it seems that the most optimal choice of nutritional support during the first week of stay in the ICU is a gradual increase in both energy and protein intake. In numerical terms, this means a daily increase in energy dose of approximately 5 kcal/kg/day and a daily increase in protein dose of 0.2 g /kg/day. However, this only applies to patients admitted to the ICU with a normal body mass index, i.e. without malnutrition or without obesity. Both of these categories require special attention beyond the scope of this article.
Keywords:
critically ill – nutritional support – Hibernation – autophagy – overfeeding
Sources
1. Ronco C, Ricci Z, Husain -Syed F. From Multiple Organ Support Therapy to Extracorporeal Organ Support in Critically Ill Patients. Blood Purif. 2019; 48(2): 99–105. doi:10.1159/000490694
2. Casaer MP, Mesotten D, Hermans G et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011; 365(6): 506–517. doi:10.1056/NEJMoa1102662.
3. Fivez T, Kerklaan D, Mesotten D et al. Early versus Late Parenteral Nutrition in Critically Ill Children. N Engl J Med. 2016; 374(12): 1111–1122. doi:10.1056/NEJMoa1514762.
4. Wischmeyer PE. Tailoring nutrition therapy to illness and recovery. Crit Care. 2017;21(Suppl 3):316. doi:10.1186/s13054-017-1906-8.
5. Wischmeyer PE. Are we creating survivors…or victims in critical care? Delivering targeted nutrition to improve outcomes. Curr Opin Crit Care. 2016; 22(4): 279–284. doi:10.1097/ MCC.0000000000000332.
6. Rawal G, Yadav S, Kumar R. Post -intensive Care Syndrome: an Overview. J Transl Int Med. 2017; 5(2): 90–92. doi:10.1515/jtim-2016-0016
7. Casaer MP, Van den Berghe G, Gunst J. New ESPEN Guidelines for Nutrition in the Critically Ill: Help, What Happened!? ICU Management & Practice 2019, 19: 140–144
8. Hippocrates: The Aphorisms of Hippocrates. New York: The Classics of Medicine Library; 1982.
9. Kula R, Chylek V, Szturz P et al. A response to infection in patients with severe sepsis-do we need a „stage -directed therapy concept“?. Bratisl Lek Listy. 2009;110(8):459–464.
10. Singer M, De Santis V, Vitale D, Jeffcoate W. Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet. 2004; 364(9433): 545–548. doi:10.1016/S0140-6736(04)16815-3
11. Mongardon N, Dyson A, Singer M. Is MOF an outcome parameter or a transient, adaptive state in critical illness?. Curr Opin Crit Care. 2009; 15(5): 431–436. doi:10.1097/ MCC.0b013e3283307a3b.
12. Stanzani G, Tidswell R, Singer M. Do critical care patients hibernate? Theoretical support for less is more. Intensive Care Med. 2019;10.1007/s00134-019-05813-9. doi:10.1007/s00134-019-05813-9
13. Singer M, Glynne P. Treating critical illness: the importance of first doing no harm. PLoS Med. 2005; 2(6): e167. doi:10.1371/journal.pmed.0020167.
14. Kapadia FN, Kapoor R, Trivedi M. Can Less be More in Intensive Care?. Indian J Crit Care Med. 2017; 21(1): 1–5. doi:10.4103/0972-5229.198308.
15. Uehara M, Plank LD, Hill GL. Components of energy expenditure in patients with severe sepsis and major trauma: a basis for clinical care. Crit Care Med. 1999; 27(7): 1295–1302. doi:10.1097/00003246-199907000-00015.
16. Kreymann G, Grosser S, Buggisch P, Gottschall C, Matthaei S, Greten H. Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome, and septic shock. Crit Care Med. 1993; 21(7): 1012–1019. doi:10.1097/00003246-199307000-00015.
17. Puthucheary ZA, Rawal J, McPhail M, et al. Acute skeletal muscle wasting in critical illness [published correction appears in JAMA. 2014;311(6):625. Padhke, Rahul [corrected to Phadke, Rahul]]. JAMA. 2013; 310(15): 1591–1600. doi:10.1001/jama.2013.278481.
18. Cerra FB, Siegel JH, Coleman B, Border JR, McMenamy RR. Septic autocannibalism. A failure of exogenous nutritional support. Ann Surg. 1980; 192(4): 570–580. doi:10.1097/00000658- 198010000-00015.
19. Hartl WH, Jauch KW. Metabolic self -destruction in critically ill patients: origins, mechanisms and therapeutic principles. Nutrition. 2014; 30(3): 261–267. doi:10.1016/j. nut.2013. 07. 019.
20. Losser MR, Damoisel C, Payen D. Bench -to -bedside review: Glucose and stress conditions in the intensive care unit. Crit Care. 2010; 14(4):231. doi:10.1186/cc9100.
21. Losser MR, Bernard C, Beaudeux JL, Pison C, Payen D. Glucose modulates hemodynamic, metabolic, and inflammatory responses to lipopolysaccharide in rabbits. J Appl Physiol (1985). 1997; 83(5): 1566–1574. doi:10.1152/jappl.1997. 83. 5.1566.
22. Marik PE, Bellomo R. Stress hyperglycemia: an essential survival response!. Crit Care. 2013;17(2):305. doi:10.1186/cc12514.
23. Elke G, van Zanten AR, Lemieux M et al. Enteral versus parenteral nutrition in critically ill patients: an updated systematic review and meta -analysis of randomized controlled trials. Crit Care. 2016; 20(1): 117. doi:10.1186/s13054-016-1298-1.
24. Peterson SJ, Lateef OB, Freels S, McKeever L, Fantuzzi G, Braunschweig CA. Early Exposure to Recommended Calorie Delivery in the Intensive Care Unit Is Associated With Increased Mortality in Patients With Acute Respiratory Distress Syndrome. JPEN J Parenter Enteral Nutr. 2018; 42(4): 739–747. doi:10.1177/0148607117713483.
25. Arabi YM, Tamim HM, Dhar GS et al. Permissive underfeeding and intensive insulin therapy in critically ill patients: a randomized controlled trial. Am J Clin Nutr. 2011; 93(3): 569–577. doi:10.3945/ajcn.110.005074.
26. Zusman O, Theilla M, Cohen J, Kagan I, Bendavid I, Singer P. Resting energy expenditure, calorie and protein consumption in critically ill patients: a retrospective cohort study. Crit Care. 2016; 20(1): 367. doi:10.1186/s13054-016-1538-4.
27. Oshima T, Deutz NE, Doig G, Wischmeyer PE, Pichard C. Protein -energy nutrition in the ICU is the power couple: A hypothesis forming analysis. Clin Nutr. 2016; 35(4): 968–974. doi:10.1016/j.clnu.2015. 10. 016.
28. Al -Dorzi HM, Albarrak A, Ferwana M, Murad MH, Arabi YM. Lower versus higher dose of enteral caloric intake in adult critically ill patients: a systematic review and meta -analysis. Crit Care. 2016; 20(1): 358. doi:10.1186/s13054-016-1539-3.
29. Gunst J, Van den Berghe G. Intensive Care Nutrition and Post -Intensive Care Recovery. Crit Care Clin. 2018; 34(4): 573–583. doi:10.1016/j.ccc.2018. 06. 004.
30. Gunst J. Recovery from critical illness -induced organ failure: the role of autophagy. Crit Care. 2017; 21(1): 209. doi:10.1186/s13054-017-1786-y.
31. https://www.nobelprize.org/prizes/medicine/2016/press -release/.
32. de Cabo R, Mattson MP. Effects of Intermittent Fasting on Health, Aging, and Disease. N Engl J Med. 2019; 381(26): 2541–2551. doi:10.1056/NEJMra1905136.
33. Gunst J., Vanhorebeek I, Van den Berghe G. The role of autophagy in recovery from critical illness. ICU Management & Practice 2017; 17: 134–136.
34. Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010; 40(2): 280–293. doi:10.1016/j.molcel.2010. 09. 023.
35. Watanabe E, Muenzer JT, Hawkins WG et al. Sepsis induces extensive autophagic vacuolization in hepatocytes: a clinical and laboratory -based study. Lab Invest. 2009;89(5):549– 561. doi:10.1038/labinvest.2009.8.
36. Vanhorebeek I, Gunst J, Derde S et al. Insufficient activation of autophagy allows cellular damage to accumulate in critically ill patients. J Clin Endocrinol Metab. 2011; 96(4): E633– E645. doi:10.1210/jc.2010-2563.
37. Hermans G, Casaer MP, Clerckx B et al. Effect of tolerating macronutrient deficit on the development of intensive -care unit acquired weakness: a subanalysis of the EPaNIC trial. Lancet Respir Med. 2013; 1(8): 621–629. doi:10.1016/S2213-2600(13)70183-8.
38. Casaer MP, Mesoltten D. Nutritional Failure: An Adaptive Response to Critical Illness? ICU Management & Practice 2013, 13: 98–101.
39. Arabi YM, Al -Dorzi HM, Sadat M. Protein intake and outcome in critically ill patients. Curr Opin Clin Nutr Metab Care. 2020; 23(1): 51–58. doi:10.1097/MCO.0000000000000619.
40. Hoffer LJ. Protein requirement in critical illness. Appl Physiol Nutr Metab. 2016; 41(5): 573–576. doi:10.1139/apnm-2015-0551.
41. Rooyackers O, Sundström Rehal M, Liebau F, Norberg Å, Wernerman J. High protein intake without concerns?. Crit Care. 2017;21(1):106. doi:10.1186/s13054-017-1699-9.
42. Casaer MP, Wilmer A, Hermans G, Wouters PJ, Mesotten D, Van den Berghe G. Role of disease and macronutrient dose in the randomized controlled EPaNIC trial: a post hoc analysis. Am J Respir Crit Care Med. 2013;187(3):247–255. doi:10.1164/rccm.201206-0999OC.
43. Koekkoek WACK, van Setten CHC, Olthof LE, Kars JCNH, van Zanten ARH. Timing of PROTein INtake and clinical outcomes of adult critically ill patients on prolonged mechanical VENTilation: The PROTINVENT retrospective study. Clin Nutr. 2019; 38(2): 883–890. doi:10.1016/j.clnu.2018. 02. 012.
44. de Koning MLY, Koekkoek WACK, Kars JCNH, van Zanten ARH. Association of PROtein and CAloric Intake and Clinical Outcomes in Adult SEPTic and Non -Septic ICU Patients on Prolonged Mechanical Ventilation: The PROCASEPT Retrospective Study. JPEN J Parenter Enteral Nutr. 2020; 44(3): 434–443. doi:10.1002/jpen.1663.
45. Preiser JC, Wernerman J. Provision of Nutrients to the Acutely Ill. Introducing the „Baby Stomach“ Concept. Am J Respir Crit Care Med. 2017; 196(9): 1089–1090. doi:10.1164/rccm. 201705-0919ED.
46. Koekkoek KWAC, van Zanten ARH. Nutrition in the ICU: new trends versus old -fashioned standard enteral feeding?. Curr Opin Anaesthesiol. 2018; 31(2): 136–143. doi:10.1097/ ACO.0000000000000571.
47. Heyland DK, Stapleton R, Compher C. Should We Prescribe More Protein to Critically Ill Patients?. Nutrients. 2018;10(4):462. doi:10.3390/nu10040462.
48. Preiser JC. High protein intake during the early phase of critical illness: yes or no?. Crit Care. 2018; 22(1): 261. doi:10.1186/s13054-018-2196-5.
49. De Waele E, Malbrain MLNG, Spapen H. Nutrition in Sepsis: A Bench -to -Bedside Review. Nutrients. 2020; 12(2): 395. Published 2020 Feb 2. doi:10.3390/nu12020395.
50. Greig PD, Elwyn DH, Askanazi J, Kinney JM. Parenteral nutrition in septic patients: effect of increasing nitrogen intake. Am J Clin Nutr. 1987; 46(6): 1040–1047. doi:10.1093/ajcn/46. 6. 1040.
51. Thiessen SE, Derde S, Derese I et al. Role of Glucagon in Catabolism and Muscle Wasting of Critical Illness and Modulation by Nutrition. Am J Respir Crit Care Med. 2017; 196(9): 1131–1143. doi:10.1164/rccm.201702-0354OC.
52. Meijer AJ. Amino acid regulation of autophagosome formation. Methods Mol Biol. 2008;445:89–109. doi:10.1007/978-1-59745-157-4_5.
53. NICE -SUGAR Study Investigators, Finfer S, Chittock DR, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009; 360(13): 1283–1297. doi:10.1056/NEJMoa0810625.
54. AVERT Trial Collaboration group. Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet. 2015; 386(9988): 46– 55. doi:10.1016/S0140-6736(15)60690-0.
55. Rist VT, Weiss E, Eklund M, Mosenthin R. Impact of dietary protein on microbiota composition and activity in the gastrointestinal tract of piglets in relation to gut health: a review. Animal. 2013;7(7):1067–1078. doi:10.1017/S1751731113000062.
56.http://main.poliquingroup.com/ArticlesMultimedia/Articles/Article/2646/Three_Situations_In_Which_A_High -Protein_Diet_Is_A_Bad_Idea.aspx.
Labels
Diabetology Endocrinology Internal medicineArticle was published in
Internal Medicine
2021 Issue 1
Most read in this issue
- Fever of unknown origin
- Long-term ECG monitoring
- Follow‑up care after COVID-19 and its related concerns
- EMPEROR reduced – empagliflozin in patients with heart failure and reduced ejection fraction