CAR T-cells: hot news in cancer therapy
Authors:
Štěpán Hrabovský
Authors‘ workplace:
Interní hematologická a onkologická klinika LF MU a FN Brno, pracoviště Bohunice
Published in:
Vnitř Lék 2020; 66(7): 420-424
Category:
Overview
Cancer immunotherapy has become a standard therapeutic option in oncology over the past few decades. From the early anti-tumor vaccine experiments in the late nineteenth and early twentieth centuries, its journey led through the discovery of the allogeneic hematopoietic stem cell transplantation principles in the nineteen-seventies, introduction of monoclonal antibodies in the nineteen-nineties, their enhancing in the form of immunoconjugates and bispecific antibody constructs, up to today’s checkpoint inhibitors and chimeric antigen receptor T-cells (CAR T-cells). Not so long ago, a treatment with genetically modified lymphocytes may have seemed quite like science fiction, but nowadays, these “living drugs“ are already being administered to patients with hematological malignancies in the Czech Republic. Some may see CAR T-cells as a breakthrough treatment method and bright future of oncology, others perhaps just as an overhyped sensation, in which the cost far exceeds the efficacy. Either way, CAR T-cells will soon become a relatively routine treatment option for patients with resistant lymphoproliferative diseases. Our article aims to introduce this new interesting method to specialists outside the fields of hematology and oncology.
Keywords:
adoptive immunotherapy – axicabtagene ciloleucel – Cancer treatment – CAR T -cells – chimeric antigen receptor – tisagenlecleucel
Sources
1. Coley WB. Contribution to the Knowledge of Sarcoma. Ann Surg 1891; 14: 199–220.
2. Graham JB, Graham RM. The effect of vaccine on cancer patients. Surg Gynecol Obstet 1959; 109: 131–138.
3. Rosenberg SA, Lotze MT, Muul LM, et al. Observations on the systemic administration of autologous lymphokine- activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985; 313: 1485–1492.
4. Decker WK, da Silva RF, Sanabria MH, et al. Cancer Immunotherapy: Historical Perspective of a Clinical Revolution and Emerging Preclinical Animal Models. Front Immunol 2017; 8: 829.
5. Rosenberg SA, Packard BS, Aebersold PM, et al. Use of tumor- infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 1988; 319: 1676–1680.
6. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin- T- cell receptor chimeric molecules as functional receptors with antibody -type specificity. Proc Natl Acad Sci USA 1989; 86: 10024–10028.
7. Romeo C, Seed B. Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell 1991; 64: 1037–1046.
8. Roberts MR, Qin L, Zhang D, et al. Targeting of human immunodeficiency virus- infected cells by CD8+ T lymphocytes armed with universal T -cell receptors. Blood 1994; 84: 2878–2889.
9. Brentjens RJ, Latouche JB, Santos E, et al. Eradication of systemic B -cell tumors by genetically targeted human T lymphocytes co- stimulated by CD80 and interleukin-15. Nat Med 2003; 9: 279–286.
10. Firor AE, Jares A, Ma Y. From humble beginnings to success in the clinic: Chimeric antigen receptor- modified T- cells and implications for immunotherapy. Exp Biol Med (Maywood) 2015; 240: 1087–1098.
11. Filley AC, Henriquez M, Dey M. CART Immunotherapy: Development, Success, and Translation to Malignant Gliomas and Other Solid Tumors. Front Oncol 2018; 8: 453.
12. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in Children and Young Adults with B -Cell Lymphoblastic Leukemia. N Engl J Med 2018; 378: 439–448.
13. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene Ciloleucel CAR T -Cell Therapy in Refractory Large B -Cell Lymphoma. N Engl J Med 2017; 377: 2531–2544.
14. Robillard N, Wuillème S, Moreau P, et al. Immunophenotype of normal and myelomatous plasma -cell subsets. Front Immunol 2014; 5: 137.
15. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T- cells for sustained remissions in leukemia. N Engl J Med 2014; 371: 1507–1517.
16. Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B -Cell Lymphoma. N Engl J Med 2019; 380: 45–56.
17. Lee DW, Kochenderfer JN, Stetler- Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose -escalation trial. Lancet 2015; 385: 517–528.
18. Monjezi R, Miskey C, Gogishvili T, et al. Enhanced CAR T- cell engineering using non-viral Sleeping Beauty transposition from minicircle vectors. Leukemia 2017; 31: 186–194.
19. Zhao Y, Moon E, Carpenito C, et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 2010; 70: 9053–9061.
20. Brudno JN, Kochenderfer JN. Recent advances in CAR T- cell toxicity: Mechanisms, manifestations and management. Blood Rev 2019; 34: 45–55.
21. Lee DW, Santomasso BD, Locke FL, et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol Blood Marrow Transplant 2019; 25: 625–638.
22. Zang YW, Gu XD, Xiang JB, et al. Clinical application of adoptive T cell therapy in solid tumors. Med Sci Monit 2014; 20: 953–959.
23. Chmielewski M, Hombach AA, Abken H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev 2014; 257: 83–90.
24. Tokarew N, Ogonek J, Endres S, et al. Teaching an old dog new tricks: next -generation CAR T cells. Br J Cancer 2019; 120: 26–37.
25. Bagley SJ, O‘Rourke DM. Clinical investigation of CAR T cells for solid tumors: lessons learned and future directions. Pharmacol Ther 2019; 16: 107419.
26. Majzner R, Mackall CL. Tumor Antigen Escape from CAR T- cell Therapy. Cancer Discov 2018; 8: 1219–1226.
27. Hegde M, Mukherjee M, Grada Z, et al. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J Clin Invest 2016; 126: 3036–3052.
28. Huang L, Wang N, Li C, et al. Sequential infusion of anti- CD22 and Anti- CD19 chimeric antigen receptor T cells for adult patients with refractory/relapsed B- cell acute lymphoblastic leukemia. Blood 2017; 130: 846.
Labels
Diabetology Endocrinology Internal medicineArticle was published in
Internal Medicine
2020 Issue 7
Most read in this issue
- Hypoglycemia in non -diabetic patients
- Metformin -associated lactic acidosis
- Coagulopathy associated with COVID-19
- CAR T-cells: hot news in cancer therapy