Functional impact of hERG: from physiological role to target of anticancer therapy
Authors:
Júlia Šatková; Markéta Bébarová
Authors‘ workplace:
Fyziologický ústav LF MU, Brno
Published in:
Vnitř Lék 2017; 63(2): 114-123
Category:
Reviews
Overview
The human ether-à-go-go related gene (hERG; officially designated as KCNH2) encodes the structure of protein forming α-subunit of voltage-gated ion channel which conducts the rapid component of delayed rectifier K+ current (IKr). This current plays an important role namely in the cardiac repolarization. Mutations in hERG result in inherited arrhythmogenic syndromes characterized by a lenghtening or shortening of QT interval on the electrocardiogram and by an increased occurrence of life-threatening arrhythmias. This review also introduces hERG channels as a part of regulatory mechanisms of the smooth muscle contractility, neuronal activity, release of several hormones, and of proliferation and apoptosis of cancer cells. There are also mentioned some of the diseases arising from hERG channel dysfunction, and some possibilities of use of hERG gene/channel as a diagnostic marker and potential therapeutic target in various diseases, namely in cancer.
Key words:
cancer – epilepsy – hERG – KCNH2 – K+ channel – LQTS – membrane potential – muscle contraction – proliferation – schizophrenia
Sources
1. Curran ME, Splawski I, Timothy KW et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 1995; 80(5): 795–803.
2. Sanguinetti MC, Jiang CG, Curran ME et al. A mechanistic link between an inherited and an acquired cardiac arrhythmia – HERG encodes the IKr potassium channel. Cell 1995; 81(2): 299–307.
3. Vandenberg JI, Perry MD, Perrin MJ et al. hERG K+ channels: structure, function, and clinical significance. Physiol Rev 2012; 92(3): 1393–1478.
4. Larsen AP. Role of ERG1 isoforms in modulation of ERG1 channel trafficking and function. Pflugers Arch – Eur J Physiol 2010; 460(5): 803–812. Dostupné z DOI: <http://dx.doi.org/10.1007/s00424–010–0855–8>.
5. Babcock JJ, Li M. hERG channel function: beyond long QT. Acta Pharmacol Sin 2013; 34(3): 329–335. Dostupné z DOI: <http://dx.doi.org/10.1038/aps.2013.6>.
6. Shimizu W, Moss AJ, Wilde AAM et al. Genotype-phenotype aspects of type 2 long QT syndrome. J Am Coll Cardiol 2009; 54(22): 2052–2062. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jacc.2009.08.028>.
7. Cabral JHM, Lee A, Cohen SL et al. Crystal structure and functional analysis of the hERG potassium channel N terminus: a eukaryotic PAS domain. Cell 1998; 95(5): 649–655.
8. Warmke JW, Ganetzky B. A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci USA 1994; 91(8): 3438–3442.
9. Barros F, Domínguez P, de la Peña P. Cytoplasmic domains and voltage-dependent potassium channel gating. Front Pharmacol 2012; 3: 49. Dostupné z DOI: <http://dx.doi.org/10.3389/fphar.2012.00049>.
10. Spector PS, Curran ME, Zou AR et al. Fast inactivation causes rectification of the IKr channel. J Gen Physiol 1996; 107(5): 611–619.
11. Sacco T, Bruno A, Wanke E et al. Functional roles of an ERG current isolated in cerebellar Purkinje neurons. J Neurophysiol 2003; 90(3): 1817–1828.
12. Farrelly AM, Ro S, Callaghan BP et al. Expression and function of KCNH2 (HERG) in the human jejunum. Am J Physiol Gastr L 2003; 284(6): G883-G895.
13. Hardy AB, Fox JEM, Giglou PR et al. Characterization of Erg K+ channels in α- and β-cells of mouse and human islets. J Biol Chem 2009; 284(44): 30441–30452. Dostupné z DOI: <http://dx.doi.org/10.1074/jbc.M109.040659>.
14. Hrabcová D, Pásek M, Šimurda J et al. Effect of i on concentration changes in the limited extracellular spaces on sarcolemmal ion transport and Ca2+ turnover in a model of human ventricular cardiomyocyte. Int J Mol Sci 2013; 14(12): 24271–24292. Dostupné z DOI: <http://dx.doi.org/10.3390/ijms141224271>.
15. Roden DM. Taking the “idio” out of “idiosyncratic”: predicting torsades de pointes. Pacing Clin Electrophysiol 1998; 21(5): 1029–1034.
16. Chartrand E, Arnold AA, Gravel A et al. Potential role of the membrane in hERG channel functioning and drug-induced long QT syndrome. BBA Biomembranes 2010; 1798(9): 1651–1662. Dostupné z DOI: <http://dx.doi.org/10.1016/j.bbamem.2010.05.019>.
17. Brugada R, Hong K, Dumaine R et al. Sudden death associated with short QT syndrome linked to mutations in hERG. Circulation 2004; 109(1): 30–35.
18. Napolitano C, Priori SG, Schwartz PJ et al. Genetic testing in the long QT syndrome. Development and validation of an efficient approach to genotyping in clinical practice. Jama 2005; 294(23): 2975–2980.
19. Splawski I, Shen JX, Timothy KW et al. Spectrum of mutations in long QT syndrome genes KVLQT1, hERG, SCN5A, KCNE1 and KCNE2. Circulation 2000; 102(10): 1178–1185.
20. Moss AJ, Schwartz PJ, Crampton RS et al. The long QT syndrome: prospective longitudinal study of 328 families. Circulation 1991; 84(3): 1136–1144.
21. Schwartz PJ, Priori SG, Spazzolini C et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 2001; 103(1): 89–95.
22. Liu GX, Choi BR, Ziv O et al. Differential conditions for early after-depolarizations and triggered activity in cardiomyocytes derived from transgenic LQT1 and LQT2 rabbits. J Physiol 2012; 590(5): 1171–1180. Dostupné z DOI: <http://dx.doi.org/10.1113/jphysiol.2011.218164>.
23. Meyer JS, Mehdirad A, Salem BI et al. Sudden arrhythmia death syndrome: importance of the long QT syndrome. Am Fam Physician 2003; 68(3): 483–488. Erratum in Am Fam Physician. 2004; 69(10): 2324.
24. Kujaník Š. Regresné rovnice pre interval QT a QTc elektrokardiogramu. Vnitř Lék 2005; 51(11): 1277–1288.
25. Goldenberg I, Moss AJ, Zareba W. QT interval: How to measure it and what is “normal”. J Cardiovasc Electr 2006; 17(3): 333–336.
26. Moss AJ, Zareba W, Benhorin J et al. ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation 1995; 92(10): 2929–2934.
27. Schwartz PJ, Priori SG, Cerrone M et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation 2004; 109(15): 1826–1833.
28. Zareba W, Moss AJ, Daubert JP et al. Implantable cardioverter defibrillator in high-risk long QT syndrome patients. J Cardiovasc Electr 2003; 14(4): 337–341.
29. Rajamani S, Eckhardt LL, Valdivia CR et al. Drug-induced long QT syndrome: hERG K+ channel block and disruption of protein trafficking by fluoxetine and norfluoxetine. Br J Pharmacol 2006; 149(5): 481–489.
30. Šišáková M, Toman O, Floriánová A et al. Prodloužení QT intervalu jako důsledek kumulace rizikových faktorů – kazuistika. Vnitř Lék 2006; 52(3): 271–273.
31. Gussak I, Brugada P, Brugada J et al. Idiopathic short QT interval: a new clinical syndrome? Cardiology 2000; 94(2): 99–102.
32. Giustetto C, Di Monte F, Wolpert C et al. Short QT syndrome: clinical findings and diagnostic-therapeutic implications. Eur Heart J 2006; 27(20): 2440–2447.
33. Sun Y, Quan XQ, Fromme S et al. A novel mutation in the KCNH2 gene associated with short QT syndrome. J Mol Cell Cardiol 2011; 50(3): 433–441. Dostupné z DOI: <http://dx.doi.org/10.1016/j.yjmcc.2010.11.017>.
34. Hirdes W, Napp N, Wulfsen I et al. Erg K+ currents modulate excitability in mouse mitral/tufted neurons. Pflugers Arch 2009; 459(1): 55–70. Dostupné z DOI: <http://dx.doi.org/10.1007/s00424–009–0709–4>.
35. Nie LP, Gratton MA, Mu KJ et al. Expression and functional phenotype of mouse ERG K+ channels in the inner ear: potential role in K+ regulation in the inner ear. J Neurosci 2005; 25(38): 8671–8679.
36. Chiesa N, Rosati B, Arcangeli A et al. A novel role for hERG K+ channels: spike-frequency adaptation. J Physiol 1997; 501(Pt 2): 313–318.
37. Krauser DG, Segal AZ, Kligfield P. Severe ataxia caused by amiodarone. Am J Cardiol 2005; 96(10): 1463–1464.
38. Hindle JV, Ibrahim A, Ramaraj R. Ataxia caused by amiodarone in older people. Age Ageing 2008; 37(3): 347–348.
39. Huffaker SJ, Chen J, Nicodemus KK et al. A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nat Med 2009; 15(9): 509–518. Dostupné z DOI: <http://dx.doi.org/10.1038/nm.1962>.
40. Hashimoto R, Ohi K, Yasuda Y et al. The KCNH2 gene is associated with neurocognition and the risk of schizophrenia. World J Biol Psychiatry 2013; 14(2): 114–120. Dostupné z DOI: <http://dx.doi.org/10.3109/15622975.2011.604350>.
41. Apud JA., Zhang F, Decot H et al. Genetic variation in KCNH2 associated with expression in the brain of a unique hERG isoform modulates treatment response in patients with schizophrenia. Am J Psychiatry 2012; 169(7): 725–734. Dostupné z DOI: <http://dx.doi.org/10.1176/appi.ajp.2012.11081214>.
42. Partemi S, Cestele S, Pezzella M et al. Loss-of-function KCNH2 mutation in a family with long QT syndrome, epilepsy, and sudden death. Epilepsia 2013; 54(8): 112–116. Dostupné z DOI: <http://dx.doi.org/10.1111/epi.12259>.
43. Zamorano-Leon JJ, Yanez R, Jaime G et al. KCNH2 gene mutation: a potential link between epilepsy and long QT-2 syndrome. J Neurogenet 2012; 26(3–4): 382–386. Dostupné z DOI: <http://dx.doi.org/10.3109/01677063.2012.674993>.
44. Emmi A, Wenzel HJ, Schwartzkroin PA et al. Do glia have heart? Expression and functional role for ether-a-go-go currents in hippocampal astrocytes. J Neurosci 2000; 20(10): 3915–3925.
45. Parr E, Pozo MJ, Horowitz B et al. ERG K+ channels modulate the electrical and contractile activities of gallbladder smooth muscle. Am J Physiol Gastrointest Liver Physiol 2003; 284(3): G392-G398.
46. Greenwood IA, Yeung SY, Tribe RM et al. Loss of functional K+ channels encoded by ether-a-go-go-related genes in mouse myometrium prior to labour onset. J Physiol 2009; 587(Pt 10): 2313–2326. Dostupné z DOI: <http://dx.doi.org/10.1113/jphysiol.2009.171272>.
47. Mewe M, Wulfsen I, Schuster AME et al. Erg K+ channels modulate contractile activity in the bovine epididymal duct. Am J Physiol Regul Integr Comp Physiol 2008; 294(3): R895-R904. Dostupné z DOI: <http://dx.doi.org/10.1152/ajpregu.00521.2007>.
48. Parkington HC, Stevenson J, Tonta MA et al. Diminished hERG K+ channel activity facilitates strong human labour contractions but is dysregulated in obese women. Nat Commun 2014; 5: 4108. Dostupné z DOI: <http://dx.doi.org/10.1038/ncomms5108>.
49. Jiang M, Zhang M, Tang DG et al. KCNE2 protein is expressed in ventricles of different species, and changes in its expression contribute to electrical remodeling in diseased hearts. Circulation 2004; 109(14): 1783–1788.
50. Crociani O, Cherubini A, Piccini E et al. erg gene(s) expression during development of the nervous and muscular system of quail embryos. Mech Dev 2000; 95(1–2): 239–243.
51. Muehlbauer E, Bazwinsky I, Wolgast S et al. Circadian changes of ether-a-go-go-related-gene (Erg) potassium channel transcripts in the rat pancreas and β-cell. Cell Mol Life Sci 2007; 64(6): 768–780.
52. Rosati B, Marchetti P, Crociani O et al. Glucose- and arginine-induced insulin secretion by human pancreatic β-cells: the role of HERG K+ channels in firing and release. FASEB J 2000; 14(15): 2601–2610.
53. Bauer CK, Schafer R, Schiemann D et al. A functional role of the ERG-like inward-rectifying K+ current in prolactin secretion from rat lactotrophs. Mol Cell Endocrinol 1999; 148(1–2): 37–45.
54. Hirdes W, Dinu C, Bauer CK et al. Gonadotropin-releasing hormone inhibits ether-a-go-go-related gene K+ currents in mouse gonadotropes. Endocrinology 2010; 151(3): 1079–1088. Dostupné z DOI: <http://dx.doi.org/10.1210/en.2009–0718>.
55. Bianchi L, Wible B, Arcangeli A et al. herg encodes a K+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res 1998; 58(4): 815–822.
56. Crociani O, Guasti L, Balzi M et al. Cell cycle-dependent expression of HERG1 and HERG1B isoforms in tumor cells. J Biol Chem 2003; 278(5): 2947–2955.
57. Yang M, Brackenbury WJ. Membrane potential and cancer progression. Front Physiol 2013; 4: 185. Dostupné z DOI: <http://dx.doi.org/10.3389/fphys.2013.00185>.
58. Rao VR, Perez-Neut M, Kaja S et al. Voltage-gated ion channels in cancer cell proliferation. Cancers 2015; 7(2): 849–875. Dostupné z DOI: <http://dx.doi.org/10.3390/cancers7020813>.
59. Jehle J, Schweizer PA, Katus HA et al. Novel roles for hERG K+ channels in cell proliferation and apoptosis. Cell Death Dis 2011; 2: e193. Dostupné z DOI: <http://dx.doi.org/10.1038/cddis.2011.77>.
60. Smith GAM, Tsui HW, Newell EW et al. Functional up-regulation of HERG K+ channels in neoplastic hematopoietic cells. J Biol Chem 2002; 277(21): 18528–18534.
61. Pillozzi S, Brizzi MF, Balzi M et al. HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia 2002; 16(9): 1791–1798.
62. Larsen AP, Olesen SP, Grunnet M et al. Characterization of hERG1a and hERG1b potassium channels: a possible role for hERG1b in the IKr current. Pflugers Arch 2008; 456(6): 1137–1148. Dostupné z DOI: <http://dx.doi.org/10.1007/s00424–008–0476–7>.
63. Staudacher I, Jehle J, Staudacher K et al. Herg K+ channel-dependent apoptosis and cell cycle arrest in human glioblastoma cells. PLoS One. 2014; 9(2): e88164. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0088164>.
64. Cherubini A, Hofmann G, Pillozzi S et al. Human ether-a-go-go-related gene 1 channels are physically linked to β1 integrins and modulate adhesion-dependent signaling. Mol Biol Cell 2005; 16(6): 2972–2983.
65. Cherubini A, Taddei GL, Crociani O et al. HERG potassium channels are more frequently expressed in human endometrial cancer as compared to non-cancerous endometrium. Br J Cancer 2000; 83(12): 1722–1729.
66. Dolderer JH, Schuldes H, Bockhorn H et al. HERG1 gene expression as a specific tumor marker in colorectal tissues. Eur J Surg Oncol 2010; 36(1): 72–77. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ejso.2009.05.009>.
67. Lastraioli E, Guasti L, Crociani O et al. herg1 gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res 2004; 64(2): 606–611.
68. Shao XD, Wu KC, Guo XZ et al. Expression and significance of hERG protein in gastric cancer. Cancer Biol Ther 2008; 7(1): 45–50.
69. Afrasiabi E, Hietamaki M, Viitanen T et al. Expression and significance of hERG (KCNH2) potassium channels in the regulation of MDA-MB-435S melanoma cell proliferation and migration. Cell Signal 2010; 22(1): 57–64. Dostupné z DOI: <http://dx.doi.org/10.1016/j.cellsig.2009.09.010>.
70. D’Amico M, Biagiotti T, Fontana L et al. A HERG current sustains a cardiac-type action potential in neuroblastoma S cells. Biochem Biophys Res Commun 2003; 302(1): 101–108.
71. Masi A, Becchetti A, Restano-Cassulini R et al. hERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma cell lines. Br J Cancer 2005; 93(7): 781–792.
72. Pillozzi S, Accordi B, Rebora P et al. Differential expression of hERG1A and hERG1B genes in pediatric acute lymphoblastic leukemia identifies different prognostic subgroups. Leukemia 2014; 28(6): 1352–1355. Dostupné z DOI: <http://dx.doi.org/10.1038/leu.2014.26>
73. Erdem M, Tekiner TA, Fejzullahu A et al. herg1b expression as a potential specific marker in pediatric acute myeloid leukemia patients with HERG 897K/K genotype. Pediatr Hematol Oncol 2015; 32(3): 182–192. Dostupné z DOI: <http://dx.doi.org/10.3109/08880018.2014.949941>.
74. Pillozzi S, Brizzi MF, Bernabei PA et al. VEGFR-1 (FLT-1), β1 integrin, and hERG K+ channel for a macromolecular signaling complex in acute myeloid leukemia: role in cell migration and clinical outcome. Blood 2007; 110(4): 1238–1250.
75. Pillozzi S, Masselli M, De Lorenzo E et al. Chemotherapy resistance in acute lymphoblastic leukemia requires hERG1 channels and is overcome by hERG1 blockers. Blood 2011; 117(3): 902–914. Dostupné z DOI: <http://dx.doi.org/10.1182/blood-2010–01–262691>.
76. Lastraioli E, Lottini T, Bencini L et al. hERG1 potassium channels: novel biomarkers in human solid cancers. Biomed Res Int 2015; 2015: 896432. Dostupné z DOI: <http://dx.doi.org/10.1155/2015/896432>.
77. Chen SZ, Jiang M, Zhen YS. HERG K+ channel expression-related chemosensitivity in cancer cells and its modulation by erythromycin. Cancer Chemother Pharmacol 2005; 56(2): 212–220.
78. Marek J, Linhart A, Rucklová Z et al. Kardiotoxicita onkologické léčby. Vnitř Lék 2011; 57(5): 472–484.
79. Raschi E, Ceccarini L, De Ponti F et al. hERG-related drug toxicity and models for predicting hERG liability and QT prolongation. Expert Opin Drug Metab Toxicol 2009; 5(9): 1005–1021. Dostupné z DOI: <http://dx.doi.org/10.1517/17425250903055070>.
80. Ganapathi SB, Kester M, Elmslie KS. State-dependent block of HERG potassium channels by R-roscovitine: implications for cancer therapy. Am J Physiol Cell Ph 2009; 296(4): C701-C710. Dostupné z DOI: <http://dx.doi.org/10.1152/ajpcell.00633.2008>.
81. Zhao H, Wei XL, Jia YS et al. Silencing of herg gene by shRNA inhibits SH-SY5Y cell growth in vitro and in vivo. Eur J Pharmacol 2008; 579(1–3): 50–57.
82. Cho K, Wang X, Nie S et al. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008; 14(5): 1310–1316. Dostupné z DOI: <http://dx.doi.org/10.1158/1078–0432.CCR 07–1441>.
Labels
Diabetology Endocrinology Internal medicineArticle was published in
Internal Medicine
2017 Issue 2
Most read in this issue
- Autoantibodies in systemic connective tissue disease and ANCA-associated vasculitis, their relationship to interstitial lung diseases and prognosis
- Parathyroid cancer
- Long-acting insulins in the treatment of type 2 diabetes and their position in the current treatment algorithm
- Acute kidney injury: a current comprehensive overview