Diabetes and predictive medicine – parallax of the present time
Authors:
J. Rybka
Authors‘ workplace:
Diabetologické centrum Interní kliniky IPVZ Praha a Krajské nemocnice T. Bati, a. s., Zlín, přednosta doc. MU Dr. Čestmír Číhalík, CSc.
Published in:
Vnitř Lék 2010; 56(4): 269-279
Category:
11th National Diabetes Symposium "Diabetes and Angiology", Hradec Kralove, 5 to 6 June 2009
Overview
Predictive genetics uses genetic testing to estimate the risk in asymptomatic persons. Since in the case of multifactorial diseases predictive genetic analysis deals with findings which allow wider interpretation, it has a higher predictive value in expressly qualified diseases (monogenous) with high penetration compared to multifactorial (polygenous) diseases with high participation of environmental factors. In most “civilisation” (multifactorial) diseases including diabetes, heredity and environmental factors do not play two separate, independent roles. Instead, their interactions play a principal role. The new classification of diabetes is based on the implementation of not only ethiopathogenetic, but also genetic research. Diabetes mellitus type 1 (DM1T) is a polygenous multifactorial disease with the genetic component carrying about one half of the risk, the non‑genetic one the other half. The study of the autoimmune nature of DM1T in connection with genetic analysis is going to bring about new insights in DM1T prediction. The author presents new pieces of knowledge on molecular genetics concerning certain specific types of diabetes. Issues relating to heredity in diabetes mellitus type 2 (DM2T) are even more complex. The disease has a polygenous nature, and the phenotype of a patient with DM2T, in addition to environmental factors, involves at least three, perhaps even tens of different genetic variations. At present, results at the genom‑ wide level appear to be most promising. The current concept of prediabetes is a realistic foundation for our prediction and prevention of DM2T. A multifactorial, multimarker approach based on our understanding of new pathophysiological factors of DM2T, tries to outline a “map” of prediabetes physiology, and if these tests are combined with sophisticated methods of genetic forecasting of DM2T, this may represent a significant step in our methodology of diabetes prediction. So far however, predictive genetics is limited by the interpretation of genetic predisposition and individualisation of the level of risk. There is no doubt that interpretation calls for co‑ operation with clinicians, while results of genetic analyses should presently be not uncritically overestimated. Predictive medicine, however, unquestionably fulfills the preventive focus of modern medicine, and genetic analysis is a perspective diagnostic method.
Key words:
predictive medicine – predictive genetic analysis – diabetes mellitus type 1 – diabetes mellitus type 2 – DM2T prediction and prevention – prediabetes – diabetes prediction
Sources
1. Svačina Š. Prevence diabetu a jeho komplikací. Praha: Triton 2008.
2. Mokáň M, Martinka E, Galajda P et al. Diabetes mellitus a vybrané metabolické ochorenia. Martin: Vydavatelstvo P+M 2008.
3. Škrha J et al. Diabetologie. Praha: Galén 2009.
4. Bartoš V, Pelikánová T et al. Praktická diabetologie. 3. rozšířené vydání. Praha: Maxdorf 2003.
5. Pelikánová T. Klasifikace a patogeneze diabetu. In: Bartoš V, Pelikánová T et al (eds). Praktická diabetologie. 3. rozšířené vydání. Praha: Maxdorf 2003: 47– 86.
6. Rybka J. Prediktivní medicína: komu hrozí diabetes a komu komplikace diabetu. Dia symposia – Léčba diabetika v praxi 2009; 5 (Abstract 6– 9).
7. Rybka J. Prediabetes – 2009. Vnitř Lék 2009; 55: 819– 826.
8. Brdička R. Klinická validita a užitečnost molekulárně genetických laboratorních zkoušek. Čas Lék Čes 2009; 148: 10– 15.
9. Brdička R, Vrána M, Otáhalová E et al. Analytic validation of molecular genetic methods used in the analysis of the human genom (in Czech). Clin Biochem Metabol 2007; 1: 58– 62.
10. Brdička R, Otáhalová E, Čamajová J et al. Clinical Validation of Genetic testing. Clin Biochem Metabol 2007; 1: 63– 64.
11. Meigs JB, Shrader P, Sullivan LM et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 2008; 359: 2208– 2219.
12. Offit K. Genomic profiles for disease risk: predictive or premature? JAMA 2008; 299: 1353– 1355.
13. Lebl J, Průhová Š. Monogenně podmíněné formy diabetes mellitus. In: Perušičová J (ed). Diabetes mellitus 1. typu. Praha: Geum 2007: 117– 124.
14. Cinek O. Diabetes mellitus 1. typu. In: Škrha J et al (eds). Diabetologie. Praha: Galén 2009: 77– 86.
15. Wilson PF, Meigs JB, Sullivan L et al. Prediction of incident diabetes mellitus in middle‑ aged adults: the Framingham Offspring Study. Arch Intern Med 2007; 167: 1068– 1074.
16. Gallivan J, Brown C, Greenberg R et al. Predictors of Perceived Risk of the Development of Diabetes. Diabetes Spectr 2009; 22: 163– 169.
17. Todd JA, Walker NM, Cooper JD et al. Robust associations of four new chromosome regions from genome‑ wide analyses of type 1 diabetes. Nat Genet 2007; 39: 857– 864.
18. Olden K. Toxicogenomics – a new systems toxicology approach to understanding of gene‑ environment interactions. Ann NY Acad Sci 2006; 1076: 703– 706.
19. Fontaine‑ Bisson B, Wolever TM, Chiasson JL et al. Genetic polymorphisms of tumor necrosis factor‑alpha modify the association between dietary polyunsaturated fatty acids and fasting HDL‑cholesterol and apo A‑ I concentrations. Am J Clin Nutr 2007; 86: 768– 774.
20. Ingelsson E, Pencina MJ, Tofler GH et al. Multimarker approach to evaluate the incidence of the metabolic syndrome and longitudinal changes in metabolic risk factors: the Framingham Offspring Study. Circulation 2007; 116: 984– 992.
21. Zethelius B, Berglund L, Sundström J et al. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med 2008; 358: 2107– 2116.
22. Herceg Z. Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Mutagenesis 2007; 22: 91– 103.
23. Thomson G, Robinson WP, Kuhner MK et al. Genetic heterogeneity, modes of inheritance, and risk estimates for a joint study of Caucasians with insulin‑dependent diabetes mellitus. Am J Hum Genet 1988; 43: 799– 816.
24. Wang TJ, Gona P, Larson MG et al. Multiple biomarkers and the risk of incident hypertension. Hypertension 2007; 49: 432– 438.
25. Olden K, White SL. Health‑related disparities influence of environmental factors. Med Clin North Am 2005; 89: 721– 738.
26. Welcome Trust Case Control Consortium. Genome‑ wide association study of 14 000 cases of seven common diseases and 3 000 shared controls. Nature 2007; 447: 661– 678.
27. Chávez A, Muňoz de Chávez M. Nutrigenomics in public health nutrition: short‑term perspectives. Eur J Clin Nutr 2003; 57 (Suppl 1): S97– S100.
28. Nathan DM. Symposium Living with Diabetes. Primary prevention of type 2 diabetes: drugs vs lifestyle. IDF Congress, Montreal 2009.
29. Caillat‑ Zuckman S, Djilali‑ Saiah I, Timsit J et al. Insulin dependent diabetes mellitus (IDDM): 12th International Histocompatibility Workshoop study. 12th International HLA workshop, EDK, Sevres, Paris 1997.
30. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2009; 32 (Suppl 1): S61– S67.
31. Dobríková M, Stančáková A, Javorský Met al. Genetické pozadie diabetes mellitus 2. typu. Interná Med 2007; 3: 147– 152.
32. Minárik P, Michalková D, Luliak M. Diabetes mellitus 1. typu – od teórie k praxi – časť 2: genetika a predikcia ochorenia. Diabetes a obezita 2008; 8: 16– 30.
33. Martinka E. Genetika a diabetes mellitus. In: Mokáň M, Martinka E, Galajda P et al (eds). Diabetes mellitus a vybrané metabolické ochorenia. Martin: Vydavatelstvo P + M 2008: 406– 423.
34. Cinek O. Etiologie dětského diabetes mellitus 1. typu. In: Perušičová J (ed). Diabetes mellitus 1. typu. Praha: Geum 2007: 47– 72.
35. Cinek O, Koloušková S, Šnajderová M et al. HLA class II genetic association of type 1 diabetes mellitus in Czech children. Pediatr Diabetes 2001; 2: 98– 102.
36. Risch N. Genetics of IDDM: evidence for complex inheritance with HLA. Genet Epidemiol 1989; 6: 143– 148.
37. Martinka E. Patogenéza diabetes mellitus 1. typu. In: Mokáň M, Martinka E, Galajda P et al (eds). Diabetes mellitus a vybrané metabolické ochorenia. Martin: Vydavatelstvo P + M 2008: 406– 423.
38. Kaprio J, Tuomilehto J, Koskenvuo M et al. Concordance for type 1 (insulin‑dependent) and type 2 (non‑insulin‑dependent) diabetes mellitus in a population‑based kohort of twins in Finland. Diabetologia 1992; 35: 1060– 1067.
39. Ronningen K, Spurkland A, Tait B et al. HLA class II associations in insulin‑dependent diabetes mellitus among black, Caucasoids and Japanese. In: Tsuji K, Aizawa H, Sasazuki T (eds). Proceedings of the Eleventh International Histocompatibility Workshoop and Conference. Oxford: Oxford University Press 1993: 713– 722.
40. Minárik P, Michalková D, Luliak M. Diabetes mellitus 1. typu – od teórie k praxi – časť 1: autoprotilátky a predikcia diabetes mellitus 1. typu. Diabetes a obezita 2008; 8: 9– 15.
41. Maclaren N, Lan M, Coutant R et al. Only multiple autoantibodies to islet cells (ICA), insulin, GAD65, IA‑ 2 and IA‑ 2beta predict immune‑ mediated (Type 1) diabetes relatives. J Autoimmun 1999; 12: 279– 287.
42. Xavier RJ, Rioux JD. Genome‑ wide association studies: a new Windows into immune‑ mediated diseases. Nat Rev Immunol 2008; 8: 631– 643.
43. Davies JL, Kawaguchi Y, Bennett ST et al. A genome‑ wide search for human type 1 diabetes susceptibility genes. Nature 1994; 371: 130– 136.
44. Barroso I. Genetics of type 2 diabetes. Diabet Med 2005; 22: 517– 535.
45. McCarthy MI. Type 2 diabetes: whole genome analysis and beyond. Symposium Foundation Science. Where now for diabetes genetics? IDF Congress, Montreal 18.– 22. October 2009.
46. Lyssenko V, Jonsson A, Almgren P. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 2008; 359: 2220– 2232.
47. Paterson AD, Waggott D, Boright AP et al. A Genome‑ Wide Association Study Identifies Variation Nera SORCS1 as a Major Locus for Glycemic Control in Type 1 Diabetes, as Measured by Both HbA1c and Glucose. 69th Scientific Sessions, New Orleans 2009.
48. Lebl J, Průhová Š. Monogenně podmíněné formy diabetes mellitus. In: Škrha J et al (eds). Diabetologie. Praha: Galén 2009: 117– 124.
49. Lebl J, Čiháková D, Šedivá A. Autoimunitní polyglandulární syndrom 1. typu: Klinický průběh u 22 dětí a mladých dospělých ze střední a východní Evropy. Čes Slov Pediat 2002; 57: 679– 684.
50. Ramsdell F, Ziegler SF. Transcription factors and autoimmunity. Curr Opin Immunol 2003; 15: 718– 724.
51. Průhová Š, Ek J, Lebl J et al. Genetic epidemiology of MODY in the Czech republic: new mutations in the MODY genes HNF‑ 4alpha, GCK and HNF‑ 1alpha. Dia-betologia 2003; 46: 291– 295.
52. Klimeš I, Staník J, Gašperíková D. Odporúčania ISPAD pre diagnostiku a manažment monogénovej cukrovky. Diabetes a obezita 2007; 7: 107– 122.
53. Lebl J, Průhová Š. Trvalá mírná hyperglykémie u několika členů jedné rodiny: objev nové mutace Glu268Stop v genu pro glucokinázu (MODY2). DMEV 2002; 5: 6– 10.
54. Hansen SK, Párrizas M, Jensen ML et al. Genetic evidence that HNF‑ 1alpha‑ dependent transcriptional control of HNF‑ 4 alpha is essentials for human pancreatic beta cell function. J Clin Invest 2002; 110: 827– 833.
55. Njølstad PR, Søvik O, Cuesta‑ Muñoz A et al. Neonatal diabetes mellitus due to complete glucokinase deficiency. N Engl J Med 2001; 344: 1588– 1592.
56. Ellard S, Beards F, Allen LI et al. A high prevalence of glucokinase mutations in gestational diabetic subjects selected by clinical criteria. Diabetologia 2000; 43: 250– 253.
57. Cinek O. Diabetes mellitus 1. typu. In: Škrha J et al (eds). Diabetologie. Praha: Galén 2009: 77– 86.
58. Slaník J, Gašperíková D, Klimeš I. Iné specifické typy diabetes mellitus. Monogénové formy diabetes mellitus. In: Mokáň M, Martinka E, Galajda P et al (eds). Diabetes mellitus a vybrané metabolické ochorenia. Martin: Vydavatelstvo P + M 2008: 349– 405.
59. Bendlová B, Svačina Š. Diabetes mellitus 2. typu. In: Škrha J et al (eds). Diabetologie. Praha: Galén 2009: 95– 117.
60. Uličiansky V, Schroner Z. Prevencia diabetes mellitus 2. typu. Interná Med 2009; 9: 181– 187.
61. Meigs JB. Prediction of type 2 diabetes: the dawn of polygenetic testing for complex disease. Diabetologia 2009; 52: 568– 570.
62. McCarthy MI, Hattersley AT. Learning from molecular genetics: novel insights arising from the definition of genes for monogenic and type 2 diabetes. Diabetes 2008; 57: 2889– 2898.
63. Weedon MN, McCarthy MI, Hitman G et al. Combining information from common type 2 diabetes risk polymorphisms improves disease prediction. PLoS Med 2006; 3: e374.
64. Lango H, Palmer CN, Morris AD et al. Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes 2008; 57: 3129– 3135.
65. Kahn SE. Beta cell. Symposium Clinical research. Prediabetes: which organ is the culprit? IDF Congress, Montreal 18.– 22. October 2009.
66. Bloomgarden ZT. Topics in type 2 diabetes and insulin resistance. Diabetes Care 2009; 32: e13– e19.
67. Tsigos C. Chronic stress, visceral obesity and type 2 diabetes. Symposium Living with Diabetes. Stress: the critical factor in type 2 diabetes? IDF Congres, Montreal 18.– 22. October. 2009.
68. Roden M. Liver. Symposium Clinical Research. Prediabetes: which organ is the culprit? IDF Congress, Montreal 18.– 22. October 2009.
69. Kadowaki T, Yamauchi T. Adipocyte. Symposium Clinical Research. Prediabetes: which organ is the culprit? IDF Congress, Montreal 18.– 22. October 2009.
70. Pickup J. Inflammatory stress. Symposium Living with Diabetes. Stress: the critical factor in type 2 diabetes? IDF Congress, 18.– 22. October Montreal 2009.
71. Prokopenko I, Langenberg C, Florez JC et al. Variants in MTNR1B influence fasting glucose levels. Nat Genet 2009; 41: 77– 81.
72. Bouatia‑ Naji N, Bonnefond A, Cavalcanti‑Proenca C et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet 2009; 41: 89– 94.
73. Florez JC, Jablonski KA, Bayley N et al. Diabetes Prevention Program Research Group. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med 2006; 355: 241– 250.
74. Grant SF, Thorleifsson G, Reynisdottir I et al. Variant of transcription factor 7‑like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006; 38: 320– 323.
75. Franks PW, Jablonski KA, Delahanty L et al. Diabetes Prevention Program Research Group. The Pro12Ala variant at the peroxisome proliferator‑activated receptor gamma gene and chase in obesity‑related trans in the Diabetes Prevention Program. Diabetologia 2007; 50: 2451– 2460.
76. Loos RJ, Franks PW, Francis RW et al. TCF7L2 polymorphisms modulate proinsulin levels and b‑ cell function in a British Europid population. Diabetes 2007; 56: 1743– 1747.
77. Florez JC, Jablonski KA, Kahn SE et al. Diabetes Prevention Program Research Group. Type 2 diabetes‑associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the Diabetes Prevention Program. Diabetes 2007; 56: 531– 536.
78. Hunter DJ, Khoury MJ, Drazen JM. Letting the genome out of the bottle: will we get our wish? N Engl J Med 2008; 358: 105– 107.
79. Holman RR, Paul SK, Bethel MA et al. 10- Year follow‑up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359: 1577– 1589.
80. Holman RR, Watkins PJ. UKPDS the first 30 years. Australia: Wiley‑ Blackwel 2008.
81. USPSTF: Screening for type 2 diabetes mellitus in adults: recommendations and rationale. Ann Inter Med 2003; 138: 212– 214.
82. Lindström J, Ilanne‑ Parikka P, Peltonen M et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow‑up of the Finnish Diabetes Prevention Study. Lancet 2006; 368: 1673– 1679.
83. Tuomilehto J, Lindstrőm J, Eriksson JG et al. Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344: 1343– 1350.
84. Tuomilehto J. Non‑ invasive: FINDRISC and others. Symposium Healthcare and Epidemiology. Screening for diabetes: moving to reality? IDF Congress, Montreal 18.– 22. October 2009.
85. Nathan DM, Davidson MB, DeFronzo RA et al. American Diabetes Association. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care 2007; 30: 753– 759.
86. National Diabetes Surveillance System: Incidence of diabetes: crude and ageadjusted incidence of diagnosed diabetes per 1,000 population agend 18– 79 years, United States, 1980– 2006. Available from http: / / www.cdc.gov/ diabetes/ statistics/ incidence/ fig2.htm, 2008. Accessed 18 August 2008.
87. Gerstein HC. Point: If it is important to prevent type 2 diabetes, it is important to consider all proven therapies within a comprehensive approach. Diabetes Care 2007; 30: 432– 434.
88. Nijpels G, Boorsma W, Dekker JM et al. A study of the effects of acarbose on glucose metabolism in patients predisposed to developing diabetes: the Dutch Acarbose Intervention Study in Persons with Impaired Glucose Tolerance (DAISI). Diabetes Metab Res Rev 2008; 24: 611– 616.
89. Saudek CD, Herman WH, Sacks DB et al. A new look at screening and diagnosing diabetes mellitus. J Clin Endocrinol Metab 2008; 93: 2447– 2453.
90. Tabák AG, Kivimaki M, Brunner EJ et al. Trajectories of Serum High‑Sensitivity C‑ Reactive Protein (CRP) Preceding Fatal Cardiovascular Disease (CVD) and Incident Diabetes Mellitus (DM): The Whitehall Study. 69th Scientific Sessions, New Orleans 2009.
91. Meigs JB. Multiple biomarker prediction of type 2 diabetes. Diabetes Care 2009; 32: 1346– 1348.
92. Rybka J. Diabetes mellitus 2. typu, co víme a v co věříme. Stručný nástin etiopatogenetických poznatků. Diabetes a obezita 2008; 8: 31– 39.
93. Kolberg JA, Jørgensen T, Gerwien RW et al. Development of a type 2 diabetes risk model from a panel of serum biomarkers from the Inter99 cohort. Diabetes Care 2009; 32: 1207– 1212.
94. Meigs JB, Hu FB, Rifai N et al. Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA 2004; 291: 1978– 1986.
95. Hu FB, Meigs JB, Li TY et al. Inflammatory markers and risk of developing type 2 diabetes in women. Diabetes 2004; 53: 693– 700.
96. Hivert MF, Sullivan LM, Fox CS et al. Associations of adiponectin, resistin, and tumor necrosis factor‑alpha with insulin resistance. J Clin Endocrinol Metab 2008; 93: 3165– 3172.
97. Meigs JB, O’Donnell CJ, Tofler GH et al. Hemostatic markers of endothelial dysfunction and risk of incident type 2 diabetes: the Framingham Offspring Study. Diabetes 2006; 55: 530– 537.
98. Ding EL, Song Y, Malik VS et al. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta‑analysis. JAMA 2006; 295: 1288– 1299.
99. Janssens AC, Gwinn M, Bradley LA et al. A critical appraisal of the scientific basis of commercial genomic profiles used to assess health risks and commercial genomic profiles used to assess health risks and personalize health interventions. Am J Hum Genet 2008; 82: 593– 599.
100. Lin X, Song K, Lim N et al. Risk prediction of prevalent diabetes in a Swiss population using a weighted genetic score – tho CoLaus Study. Diabetologia 2009; 52: 600– 602.
101. Vaxilliare M, Veslot J, Dina C et al. Impact of common type 2 diabetes risk polymorphism in the DESIR prospective study. Diabetes 2008; 57: 244– 254.
102. van Hoek M, Dehghan A, Witteman JC et al. Predicting type 2 diabetes based on polymorphisms from genome‑ wide association studies: a population‑based study. Diabetes 2008; 57: 3122– 3128.
103. Meigs JB, Shrader P, Sullivan LM et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 2008; 359: 2208– 2219.
Labels
Diabetology Endocrinology Internal medicineArticle was published in
Internal Medicine
2010 Issue 4
Most read in this issue
- Angiopathy and the eye
- Peripheral arterial disease and diabetes
- Surgical treatment of ischemic heart disease and diabetes mellitus
- Diabetes mellitus and ischemic heart disease