Ubiquitins, proteasomes, sumoylation and application today and in future for cancer and other diseases therapy II.
Sumoylation and neddylation as posttranslational modifications of proteins and their significance
Authors:
O. Fuchs 1; R. Neuwirtová 2
Authors‘ workplace:
Ústav hematologie a krevní transfuze, Praha, ředitel prof. MUDr. Pavel Klener, DrSc.
1; I. interní klinika 1. lékařské fakulty UK a VFN, Praha, přednosta prof. MUDr. Pavel Klener, DrSc.
2
Published in:
Vnitř Lék 2006; 52(6): 619-627
Category:
Review
Overview
Posttranslational protein modifications are effective devices that cells use to control the functions of proteins. Ubiquitin-like protein modifiers (Ubls) are posttranslationally attached to proteins by enzymatic reactions that are similar to ubiquitin conjugation. SUMO (small ubiquitin-related modifier) family proteins are the most intriguing Ubls. Sumoylation is the covalent attachment of SUMO to target proteins. Neddylation is the process that conjugates the ubiquitin-like polypeptide Nedd8 to the conserved lysines of cullins. Cullin family proteins organize ubiquitin ligase complexes to target numerous cellular proteins for polyubiquitinylation and subsequent proteasomal degradation. Despite the similarities in their structure and in enzymatic reactions Ubls and ubiquitin have distinct functions. In contrast with polyubiquitinylation that targets modified proteins to proteasome degradation, the biological consequences of sumoylation include the increase of protein stability. Sumoylation also helps in the protein transport from the cytoplasm to nucleus of cells, regulates transcriptional activities of proteins and mediates the binding of the protein to other proteins. Neddylation has importance for cell cycle control, signal transmission, cell differentiation and DNA repair. Recent studies linked sumoylation and neddylation of several proteins to important diseases (neurodegenerative diseases, acute promyelocytic leukemia, type I diabetes and other disorders). The regulation of these postranslational modifications may provide new targets for therapeutic intervention in several human diseases.
Key words:
ubiquitin-like protein modifiers - SUMO - Nedd8 - sumoylation - neddylation
Sources
1. Matunis MJ, Coutavas E, Blobel G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 1996; 135: 1457-1470.
2. Mahajan R, Delphin C, Guan T et al. A small-ubiquitin related polypeptide involved in targeting Ran-GAP1 to nuclear pore complex protein RanBP2. Cell 1997; 88: 97-107.
3. Boddy MN, Howe K, Etkin LD et al. PIC1, a novel ubiquitin-like protein which interacts with the PML component of multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 1996; 13: 971-982.
4. Okura T, Gong L, Kamitani T et al. Protection against Fas/APO-1 and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J Immunol 1966; 157: 4277-4281.
5. Mannen H, Tseng HM, Cho CL et al. Cloning and expression of human homolog HSMT3 to yeast SMT3 suppressor of MIF2 mutations in a centromere protein gene. Biochem Biophys Res Commun 1966; 222: 178-180.
6. Shen Z, Pardington-Purtymun PE, Comeaux JC et al. UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 1966; 36: 271-279.
7. Dohmen RJ. SUMO protein modification. Biochim Biophys Acta 2004; 1695: 113-131.
8. Hilgarth RS, Murphy LA, Skaggs HS et al. Regulation and function of SUMO modification. J Biol Chem 2004; 279: 53899-53902.
9. Kumar S, Yoshida Y, Noda M. Cloning of a cDNA which encodes a novel ubiquitin-like protein. Biochem Biophys Res Commun 1993; 195: 393-399.
10. Kamitani T, Kito K, Nguyen HP et al. Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J Biol Chem 1997; 272: 28557-28562.
11. Saitoh H, Hinchey J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 2000; 275: 6252-6258.
12. Dohmen RJ. SUMO protein modification. Biochim Biophys Acta 2004; 1695: 113-131.
13. Azuma Y, Arnaoutov A, Dasso M. SUMO-2/3 regulates topoisomerase II in mitosis. J Cell Biol 2003; 163: 477-487.
14. Bohren KM, Nadkarni V, Song JH et al. A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem 2004; 279: 27233-27238.
15. Guo D, Li M, Zhang Y et al. A functional variant of SUMO-4, a new IκBα moldifier, is associated with type 1 diabetes. Nat Genet 2004; 36: 837-841.
16. Owerbach D, Pina L, Gabbay KH. A 212-kb region on chromosome 6q25 containing TAB2 gene is associated with susceptibility to type 1 diabetes. Diabetes 2004; 53: 1890-1893.
17. Li M, Guo D, Isales CM et al. SUMO wrestling with type 1 diabetes. J Mol Med 2005; 83: 504-513.
18. Johnson ES. Protein modification by SUMO. Annu Rev Biochem 2004; 73: 355-382.
19. Schwartz DC, Hochstrasser M. A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem Sci 2003; 28: 321-328.
20. Gill G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 2004; 18: 2046-2059.
21. Hay RT. SUMO: a history of modification. Mol Cell 2005; 18: 1-12.
22. Melchior F, Schergaut M., Pichler A. SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem Sci 2003; 28: 612-616.
23. Desterro JM, Thomson J, Hay RT. Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett 1997; 417: 297-300.
24. Kahyo T, Nishida T, Yasuda H. Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol Cell 2001; 8: 713-718.
25. Sachdev S, Bruhn L, Sieber H et al. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 2001; 15: 3088-3103.
26. Pichler A, Gast A, Seeler JS et al. The nucleoporin Ran BP2 has SUMO1 E3 ligase activity. Cell 2002; 108: 109-120.
27. Pichler A, Knipscheer P, Saitoh H et al. The Ran-BP2 SUMO E3 ligase is neither HECT- nor RING- type. Nat Struct Mol Biol 2004; 11: 984-991.
28. Kagey MH, Melhuish TA, Powers SE et al. Multiple activities contribute to Pc2 E3 function. EMBO J 2005; 24: 108-119.
29. Verger A, Perdomo J, Crossley M. Modification with SUMO. A role in transcriptional regulation. EMBO Rep 2003; 48: 137-142.
30. Hay RT. Protein modification by SUMO. Trends Biochem Sci 2001; 26: 332-333.
31. Kim KI, Baek SH, Chung CH. Versatile protein tag, SUMO: its enzymology and biological function. J Cell Physiol 2002; 191: 257-268.
32. Xu Z, Au SWN. Mapping residues of SUMO precursors essential in differential maturation by SUMO-specific protease, SENP1. Biochem J 2005; 386: 325-330.
33. Stewart M. Nuclear trafficking. Science 2003; 302: 1513-1514.
34. Fahrenkrog B, Köser J, Aebi U. The nuclear pore complex: a jack of all trades? Trends Biochem Sci 2004; 29: 175-182.
35. Lee SJ, Matsuura Y, Man Liu S et al. Structural basis for nuclear import complex dissociation by RanGTP. Nature 2005; 435: 693-696.
36. Rajan S, Plant LD, Rabin ML et al. Sumoylation silences the plasma membrane leak K+ channel K2p1. Cell 2005; 121: 37-47.
37. Gill G. Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity.Curr Opin Genet Dev 2003; 13: 108-113.
38. Verger A, Perdomo J, Crossley M. Modification with SUMO. A role in transcriptional regulation. EMBO Rep 2003; 48: 137-142.
39. Gill G. Something about SUMO inhibits transcription. Curr Opin Genet Dev 2005; 15: 1-6.
40. Hilgarth RS, Murphy LA, Skaggs HS et al. Regulation and function of SUMO modification. J Biol Chem 2004; 279: 53899-53902.
41. Yamamoto H, Ihara M, Matsuura Y et al. Sumoylation is involved in β-catenin-dependent activation of Tcf-4. EMBO J 2003; 22: 2047-2059.
42. Gomez-del Arco P, Koipally J, Georgopoulos K. Ikaros SUMOylation: switching out of repression. Mol Cell Biol 2005; 25: 2688-2697.
43. Girdwood D, Bumpass D, Vaughan OA et al. P300 transcriptional repression is mediated by SUMO modification. Mol Cell 2003; 11: 1043-1054.
44. David G, Neptune MA, DePinho RA. SUMO-1 modification of histone deacetylase 1 (HDAC 1) modulates its biological activities. J Biol Chem 2002; 277: 23658-23663.
45. Zhang Y. Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev 2003; 17: 2733-2740.
46. Nathan D, Sterner DE, Berger SL. Histone modifications: Now summoning sumoylation. Proc Natl Acad Sci USA 2003; 100: 13118-13120.
47. Shiio Y, Eisenman RN. Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 2003; 100: 13225-13230.
48. Hoege C, Pfander B, Moldavan GL et al. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 2002; 419: 135-141.
49. Stelter P, Ulrich HD. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 2003; 425: 188-191.
50. Papouli E, Chen S, Davies AA et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 2005; 19: 123-133.
51. Nevels M, Brune W, Shenk T. Sumoylation of the human cytomegalovirus 72-kilodalton IE1 protein facilitates expression of the 86-kilodalton IE2 protein and promotes viral replication. J Virol 2004; 78: 7803-7812.
52. Gravel A, Don V, Cloutier N et al. Characterization of human herpesvirus 6 variant B immediate-early 1 protein modifications by small ubiquitin-related modifiers. J Gen Virol 2004; 85: 1319-1328.
53. Gurer C, Berthoux L, Luban J. Covalent modification of human immunodeficiency virus type 1 p6 by SUMO-1. J Virol 2005; 79: 910-917.
54. Glotzer JB, Saltik M, Chiocca S et al. Activation of heat-shock response by an adenovirus is essential for virus replication. Nature 2000; 407: 207-211.
55. Colombo R, Boggio R, Seiser C et al. The adenovirus protein Gam1 interferes with sumoylation of histone deacetylase 1. EMBO Rep 2002; 3: 1062-1068.
56. Boggio R, Colombo R, Hay RT et al. A mechanism for inhibiting the SUMO pathway. Mol Cell 2004; 16: 549-561.
57. Steffan JS, Agrawal N, Pallos J et al. SUMO modification of Huntingtin and Huntington´s disease pathology. Science 2004; 304: 100-104.
58. Ueda H, Goto J, Hashida J et al. Enhanced SUMOylation in polyglutamine diseases. Biochem Biophys Res Commun 2002; 293: 307-313.
59. Chan HY, Warrick JM, Andriola I et al. Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Hum Mol Genet 2002; 11: 2895-2904.
60. Poutney DL, Huang Y, Burns RJ et al. SUMO-1 marks the nuclear inclusions in familial neuronal intranuclear inclusion disease. Exp Neurol 2003; 184: 436-446.
61. Li Z, Wang H, Wang S et al. Positive and negative regulation of APP amyloidogenesis by sumoylation. Proc Natl Acad Sci USA 2003; 100: 259-264.
62. Kamitani T, Kito K, Nguyen HP et al. Identification of three major sentinization sites in PML. J Biol Chem 1998; 273: 26675-26682.
63. Duprez E, Saurin AJ, Desterro JM et al. SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. J Cell Sci 1999; 112: 381-393.
64. Zhong S, Muller S, Ronchetti S et al. Role of SUMO-1 modified PML in nuclear body formation. Blood 2000; 95: 2748-2753.
65. Müller S, Matunis MJ, Dejean A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J 1998; 17: 61-70.
66. Osaka F, Kawasaki H, Aida N et al. A new NEDD8-ligating system for cullin 4A. Genes Dev 1998; 12: 2263-2268.
67. Morimoto M, Nishida T, Nagayama Y et al. Nedd8- modification of Cul1 is promoted by Roc1 as a Nedd8-E3 ligase and regulates its stability. Biochem Biophys Res Commun 2003; 301: 392-398.
68. Pan ZQ, Kentis A, Dias DC et al. Nedd8 on cullin: building an expressway to protein destruction. Oncogene 2004; 23: 1985-1997.
69. Regulation of cullin-based ubiquitin ligases by the Nedd8/RUB ubiquitin-like proteins. Semin Cell Dev Biol 2004; 15: 221-229.
70. Wei N, Deng XW. The COP9 signalosome. Annu Rev Cell Dev Biol 2003; 19: 261-286.
71. Schwechheimer C. The COP9 signalosome (CSN): an evolutionary conserved proteolysis regulator in eukaryotic development. Biochim Biophys Acta 2004; 1695: 45-54.
72. Min KW, Kwon MJ, Park HS et al. CAND1 enhances deneddylation of CUL1 by COP9 signalosome. Biochem Biopys Res Commun 2005; 334: 867-874.
73. Ohh M, Kim WZ, Moslehi JJ et al. An intact NEDD8 pathway is required for cullin-dependent ubiquitylation in mammalian cells. EMBO Rep 2002; 3: 177-182.
74. Guardavaccoro D, Pagano M. Oncogenic aberrations of cullin-dependent ubiquitin ligases. Oncogene 2004; 23: 2037-2049.
75. Ang XL, Harper JW. SCF-mediated protein degradation and cell cycle control. Oncogene 2005; 24: 2860-2870.
76. Busino L, Chiesa M, Draetta GF et al. Cdc25A phosphatase: combinatorial phosphorylation, ubiquitylation and proteolysis. Oncogene 2004; 23: 2050-2056.
Labels
Diabetology Endocrinology Internal medicineArticle was published in
Internal Medicine
2006 Issue 6
Most read in this issue
- Nuclear receptors PPARα
- Prevalence and causes of reflux in deep venous system of the leg in patients with insufficiency of superficial veins
- Sustained monomorphic ventricular tachycardia in patients with structural heart disease. Different arrhythmogenic substrates, different options of palliative and curative treatment in the era of three-dimensional mapping
- Molecular genetic diagnostics and screening of hereditary hemochromatosis