Sarcosine in urine of patients with prostate carcinoma
Authors:
N. Cernei 1; O. Zítka 1; S. Skaličková 1; J. Gumulec 3; M. Masařík 3; R. Hrabec 4; V. Adam 1,2; R. Kizek 1,2
Authors‘ workplace:
Ústav chemie a biochemie, Mendelova univerzita v Brně, Děkan: prof. Ing. Ladislav Zeman, CSc.
1; Středoevropský technologický institut, Vysoké učení technické v Brně, Ředitel: prof. Ing. Radimír Vrba, CSc.
2; Ústav patologické fyziologie, Lékařská fakulta, Masarykova univerzita, Přednostka: prof. MUDr. Anna Vašků, CSc.
3; Urologické oddělení, Fakultní nemocnice u sv. Anny v Brně, Primář: MUDr. Arne Rovný
4
Published in:
Prakt. Lék. 2012; 92(8): 444-448
Category:
Of different specialties
Overview
Prostate specific antigen (PSA) is currently the most important marker for prostate cancer, but still belongs to markers where is the necessity to disrupct damaged tissue. Therefore, markers, through which it would be possible to identify prostate cancer by analysis of urine, are being looked for. Non-protein amino acid sarcosine is one of the substances whose potential could be used in the diagnosis of prostate cancer from urine. According to several studies, sarcosine is rated as significantly better marker of developing prostate cancer than PSA, and therefore the aim of this study was to optimize a simple test for sarcosine in the urine of patients diagnosed with prostate cancer and healthy controls. For determination of sarcosine, there were used 55 male urine samples, 23 controls and 32 patients. In this study, we confirmed that the concentration of sarcosine were determinable (within the range from 120 to 1500 μM with average of 505 ± 410 μM) in urine samples of patients diagnosed with prostate cancer. Sarcosine concentrations in healthy subjects were below detection limit of the method. The obtained positive results suggest that detection of sarcosine might have a potential in the diagnosis of prostate cancer.
Key words:
sarcosine, tumour marker, prostate cancer, high performance liquid chromatography (HPLC)
Sources
1. Boyd, L.K., Mao, X.Y., Xue, L.Y. et al.: High-resolution genome-wide copy-number analysis suggests a monoclonal origin of multifocal prostate cancer. Gene Chromosomes Cancer, 2012, 51, p. 579–589.
2. Shimojo, H., Kobayashi, M., Kamigaito, T. et al.: Reduced glycosylation of alpha-dystroglycans on carcinoma cells contributes to formation of highly infiltrative histological patterns in prostate cancer. Prostate, 2011, 71, p. 1151–1157.
3. Chang, H.H., Chen, B.Y., Wu, C.Y. et al.: Hedgehog overexpression leads to the formation of prostate cancer stem cells with metastatic property irrespective of androgen receptor expression in the mouse model. J. Biomed. Sci. 2011, 18, p. 1–6.
4. Song, L.M., Zhu, Y.C., Han, P. et al.: A Retrospective Study: Correlation of histologic inflammation in biopsy specimens of Chinese men undergoing surgery for benign prostatic hyperplasia with serum prostate-specific antigen. Urology, 2011, 77, p. 688–692.
5. Astigueta, J.C., Abad, M.A., Morante, C. et al.: Characteristics of metastatic prostate cancer ocurring in patients under 50 years of age. Actas Urol. Esp. 2010, 34, p. 327–332.
6. Huang, C.N., Huang, S.P., Pao, J.B. et al.: Genetic polymorphisms in androgen receptor-binding sites predict survival in prostate cancer patients receiving androgen-deprivation therapy. Ann. Oncol. 2012, 23, p. 707–713.
7. Bjartell, A.: Genetic markers and the risk of developing prostate cancer. Eur. Urol. 2011, 60, p. 29–31.
8. Lindstrom, S., Schumacher, F.R., Cox, D. et al.: Common genetic variants in prostate cancer risk prediction-results from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). Cancer Epidemiol. Biomarkers Prev. 2012, 21, p. 437–444.
9. Fedewa, S.A., Etzioni, R., Flanders, W.D. et al.: Association of insurance and race/ethnicity with disease severity among men diagnosed with prostate cancer, National Cancer Database 2004-2006. Cancer Epidemiol. Biomarkers Prev. 2010, 19, p. 2437–2444.
10. Hall, M.J., Ruth, K., Giri, V.N.: Rates and predictors of colorectal cancer screening by race among motivated men participating in a prostate cancer risk assessment program. Cancer, 2012, 118, p. 478–484.
11. Vindrieux, D., Reveiller, M., Chantepie, J. et al.: Down-regulation of DcR2 sensitizes androgen-dependent prostate cancer LNCaP cells to TRAIL-induced apoptosis. Cancer Cell Int. 2012, 11, p. 1–14.
12. Paquet, S., Fazli, L., Grosse, L. et al.: Differential expression of the androgen-conjugating UGT2B15 and UGT2B17 enzymes in prostate tumor cells during cancer progression. J. Clin. Endocrinol. Metab. 2012, 97, p. E428–E432.
13. Tang, Y., Chen, Y.K., Jiang, H.M. et al.: Promotion of tumor development in prostate cancer by progerin. Cancer Cell Int. 2010, 10, p. 1–10.
14. Dhom, G. Pathology of benign and malignant prostate tumors. Urol.-Ausg. A. 1992, 31, p. W47-W55.
15. Catalona, W.J., Richie, J.P., Ahmann, F.R. et al.: Comparison of digital rectal examination and serum prostate-specific antigen in the early detection of prostate-cancer - results of a multicancer clinical - trial of 6,630. J. Urol. 1994, 151, p. 1283–1290.
16. Armstrong, A.J., Eisenberger, M.A., Halabi, S. et al.: Biomarkers in the management and treatment of men with metastatic castration-resistant prostate cancer. Eur. Urol. 2012, 61, p. 549–559.
17. Prensner, J.R., Rubin, M.A., Wei, J.T. et al.: Beyond PSA: The next generation of prostate cancer biomarkers. Sci. Transl. Med. 2012, 4, p.
18. van Vugt, H.A., Roobol, M.J., Busstra, M. et al.: Compliance with biopsy recommendations of a prostate cancer risk calculator. BJU Int. 2012, 109, p. 1480-1488.
19. Lattanzi, J., McNeely, S., Hanlon, A. et al.: Daily CT localization for correcting portal errors in the treatment of prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 1998, 41, p. 1079–1086.
20. Borin, J., Zhang, B., Siddiqui, K. et al.: Improved detection of prostate cancer using multi-parametric magnetic resonance imaging (MRI): Correlation of in vivo and ex vivo scans with whole mount histological sections. J. Endourol. 2007, 21, p. A29–A29.
21. Schoder, H., Larson, S.M.: Positron emission tomography for prostate, bladder, and renal cancer. Semin. Nucl. Med. 2004, 34, p. 274–292.
22. Bitencourt, A.G.V., Tyng, C.J., Pinto, P.N.V. et al.: Percutaneous biopsy based on PET/CT findings in cancer patients technique, indications, and results. Clin. Nucl. Med. 2012, 37, p. E95–E97.
23. Djavan, B., Zlotta, A., Remzi, M. et al.: Optimal predictors of prostate cancer on repeat prostate biopsy: A prospective study of 1,051 men. J. Urol. 2000, 163, p. 1144–1148.
24. Mundy, A.R., Andrich, D.E.: Posterior urethral complications of the treatment of prostate cancer. BJU Int. 2012, 110, p. 304–325.
25. Bolla, M., Gonzalez, D., Warde, P. et al.: Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. N. Engl. J. Med. 1997, 337, p. 295–300.
26. Zelefsky, M.J., Fuks, Z., Hunt, M. et al.: High dose radiation delivered by intensity modulated conformal radiotherapy improves the outcome of localized prostate cancer. J. Urol. 2001, 166, p. 876–881.
27. Bill-Axelson, A., Holmberg, L., Ruutu, M. et al.: Radical prostatectomy versus watchful waiting in early prostate cancer. N. Engl. J. Med. 2005, 352, p. 1977–1984.
28. Small, E.J., Vogelzang, N.J. Second-line hormonal therapy for advanced prostate cancer: A shifting paradigm. J. Clin. Oncol. 1997, 15, p. 382–388.
29. Sartor, A.O., Fitzpatrick, J.M.: Urologists and oncologists: adapting to a new treatment paradigm in castration-resistant prostate cancer (CRPC). BJU Int. 2012, 110, p. 328–335.
30. Fukushima, K., Satoh, T., Baba, S. et al.: Alpha 1,2-fucosylated and beta-N-acetylgalactosaminylated prostate-specific antigen as an efficient marker of prostatic cancer. Glycobiology. 2010, 20, p. 452–460.
31. Page, S.T., Hirano, L., Gilchriest, J. et al.: Dutasteride reduces prostate size and prostate specific antigen in older hypogonadal men with benign prostatic hyperplasia undergoing testosterone replacement therapy. J. Urol. 2011, 186, p. 191–197.
32. White, K.Y., Rodemich, L., Nyalwidhe, J.O. et al.: Glycomic characterization of prostate-specific antigen and prostatic acid phosphatase in prostate cancer and benign disease seminal plasma fluids. J. Proteome Res. 2009, 8, p. 620–630.
33. Mao, Q.Q., Zheng, X.Y., Jia, X.L. et al.: Relationships between total/free prostate-specific antigen and prostate volume in Chinese men with biopsy-proven benign prostatic hyperplasia. Int. Urol. Nephrol. 2009, 41, p. 761–766.
34. Jiang, Y.Q., Cheng, X.L., Wang, C.A. et al.: Quantitative determination of sarcosine and related compounds in urinary samples by liquid chromatography with tandem mass spectrometry. Anal. Chem. 2010, 82, p. 9022–9027.
35. Gumulec, J., Masařík, M., Křížková, S. a kol.: Bioanalytické studium nádorovych markerů karcinomu prostaty na úrovni RNA a proteinu. Prakt. Lék. 2011, 91, s. 469-474.
36. Xu, J.C., Stolk, J.A., Zhang, X.Q. et al.: Identification of differentially expressed genes in human prostate cancer using subtraction and microarray. Cancer Res. 2000, 60, p. 1677–1682.
37. Evans, A.J.: Alpha-Methylacyl CoA racemase (P504S): overview and potential uses in diagnostic pathology as applied to prostate needle biopsies. J. Clin. Pathol. 2003, 56, p. 892–897.
38. Rubin, M.A., Zhou, M., Dhanasekaran, S.M. et al.: Alpha-methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA 2002, 287, p. 1662-1670.
39. Rigau, M., Morote, J., Mir, M.C. et al.: PSGR and PCA3 as biomarkers for the detection of prostate cancer in urine. Prostate, 2010, 70, p. 1760–1767.
40. Cao, D.L., Ye, D.W., Zhang, H.L. et al.: A multiplex model of combining gene-based, protein-based, and metabolite-based with positive and negative markers in urine for the early diagnosis of prostate cancer. Prostate 2011, 71, p. 700–710.
41. Jamaspishvili, T., Kral, M., Khomeriki, I. et al.: Urine markers in monitoring for prostate cancer. Prostate Cancer Prostatic Dis. 2010, 13, p. 12–19.
42. Sreekumar, A., Poisson, L.M., Rajendiran, T.M. et al.: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009, 457, p. 910-914.
43. Mitchell, A.D., Benevenga, N.J.: Importance of sarcosine formation in methionine methyl carbon oxidation in rat. J. Nutr. 1976, 106, p. 1702–1713.
44. Masarik, M., Gumulec, J., Cernei, N. et al.: Sarcosine as a new marker for prostate tumours. Int. J. Mol. Med. 2010, 26, p. S47–S47.
45. Issaq, H.J., Veenstra, T.D. Is sarcosine a biomarker for prostate cancer? J. Sep. Sci. 2011, 34, p. 3619–3621.
46. Jain, M., Nilsson, R., Sharma, S. et al.: Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 2012, 336, p. 1040–1044.
47. Struys, E.A., Heijboer, A.C., van Moorselaar, J. et al.: Serum sarcosine is not a marker for prostate cancer. Ann. Clin. Biochem. 2010, 47, p. 282–282.
48. Dahl, M., Bouchelouche, P., Kramer-Marek, G. et al.: Sarcosine induces increase in HER2/neu expression in androgen-dependent prostate cancer cells. Mol. Biol. Rep. 2011, 38, p. 4237–4243.
49. Wu, H., Liu, T.T., Ma, C.G. et al.: GC/MS-based metabolomic approach to validate the role of urinary sarcosine and target biomarkers for human prostate cancer by microwave-assisted derivatization. Anal. Bioanal. Chem. 2011, 401, p. 635–646.
50. Meyer, T.E., Fox, S.D., Issaq, H.J. et al.: A Reproducible and High-Throughput HPLC/MS Method To Separate Sarcosine from alpha- and beta-Alanine and To Quantify Sarcosine in Human Serum and Urine. Anal. Chem. 2011, 83, p. 5735–5740.
51. Cavaliere, B., Macchione, B., Monteleone, M. et al.: Sarcosine as a marker in prostate cancer progression: a rapid and simple method for its quantification in human urine by solid-phase microextraction-gas chromatography-triple quadrupole mass spectrometry. Anal. Bioanal. Chem. 2011, 400, p. 2903–2912.
52. Jentzmik, F., Stephan, C., Miller, K. et al.: Sarcosine in urine after digital rectal examination fails as a marker in prostate cancer detection and identification of aggressive tumours. Eur. Urol. 2010, 58, p. 12–18.
53. Garner, R.C., Whattam, M.M., Taylor, P.J.L. et al.: Analysis of United-Kingdom purchased species for aflatoxins using an immunoaffinity column cleanup procedure followed by high-performance liquid-chromatography analysis and postcolumn derivatization with pyridinium bromide perbromide. J. Chromatogr. 1993, 648, p. 485–490.
54. Cernei, N., Zitka, O., Ryvolova, M. et al.: Spectrometric and electrochemical analysis of sarcosine as a potential prostate carcinoma marker. Int. J. Electrochem. Sci. 2012, 7, p. 4286–4301.
55. Solimana, L.C., Huia, Y., Hewavitharanab, A.K. et al.: Monitoring potential prostate cancer biomarkers in urine by capillary electrophoresis–tandem mass spectrometry. J. Chromatogr. A. 2012, doi.org/10.1016/j.chroma.2012.07.021.
56. Chen, X.F., Overcash, R., Green, T. et al.: The tumor suppressor activity of the transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) correlates with its ability to modulate sarcosine levels. J. Biol. Chem. 2011, 286, p. 96–110.
57. Cao, D.L., Ye, D.W., Zhu, Y. et al.: Efforts to resolve the contradictions in early diagnosis of prostate cancer: a comparison of different algorithms of sarcosine in urine. Prostate Cancer Prostatic Dis. 2011, 14, p. 166–172.
Labels
General practitioner for children and adolescents General practitioner for adultsArticle was published in
General Practitioner
2012 Issue 8
Most read in this issue
- Interstitial lung diseases and bronchiolar involvement
- Marijuana: risks and short intervention
- A review of guidelines for implementation of physical activity in the primary prevention of diseases
- Sarcosine in urine of patients with prostate carcinoma