Tick-borne encephalitis – pathogenesis and therapeutic approaches
Authors:
D. Růžek 1,2
Authors‘ workplace:
Oddělení virologie, Výzkumný ústav veterinárního lékařství, Brno
1; Laboratoř arbovirologie, Parazitologický ústav Biologického centra Akademie věd České republiky, České Budějovice
2
Published in:
Epidemiol. Mikrobiol. Imunol. 64, 2015, č. 4, s. 204-209
Category:
Review Article
Overview
Tick-borne encephalitis (TBE) is a major public health threat in large areas of Central and Eastern Europe and in Russia. This review summarizes the current data on the interactions between the TBE virus and the host, with a particular focus on the mechanisms of neuronal injury, immune response and immunopathology in the central nervous system (CNS), and factors that determine the course and outcome of TBE. Novel trends of experimental therapy of TBE are discussed. Combining small molecule inhibitors targeting viral replication with immunomodulatury agents might be a way to maximize viral clearance and minimize immunopathology in the CNS during TBE.
Keywords:
tick-borne encephalitis virus – tick-borne encephalitis – antiviral therapy – pathogenesis
Sources
1. Achazi K, Patel P, Paliwal R, et al. RNA interference inhibits replication of tick-borne encephalitis virus in vitro. Antiviral Res, 2012;93(1):94–100.
2. Atrasheuskaya AV, Fredeking TM, Ignatyev, GM. Changes in immune parameters and their correction in human cases of tick-borne encephalitis. Clin Exp Immunol, 2003;131(1):148–154.
3. Barkhash AV, Perelygin AA, Babenko VN, et al. Single nucleotide polymorphism in the promoter region of the CD209 gene is associated with human predisposition to severe forms of tick-borne encephalitis. Antiviral Res, 2012;93(1):64–68.
4. Barkhash AV, Perelygin AA, Babenko VN, et al. Variability in the 2‘-5‘-oligoadenylate synthetase gene cluster is associated with human predisposition to tick-borne encephalitis virus-induced disease. J Infect Dis, 2010;202(12):1813–1818.
5. Barkhash AV, Voevoda MI, Romaschenko AG. Association of single nucleotide polymorphism rs3775291 in the coding region of the TLR3 gene with predisposition to tick-borne encephalitis in a Russian population. Antiviral Res, 2013;99(2):136–138.
6. Bílý T, Palus M, Eyer L, et al. Electron tomography of tick-borne encephalitis virus infection in human neurons. Sci Rep, 2015;5:10745.
7. Boros P, Gondolesi G, Bromberg JS. High dose intravenous immunoglobulin treatment: mechanisms of action. Liver Transpl, 2005;11(12):1469–1480.
8. Eyer L, Valdés JJ, Gil VA, et al. Nucleoside inhibitors of tick-borne encephalitis virus. Antimicrob Agents Chemother, 2015;59(9):5483–5493.
9. Gelpi E, Preusser M, Garzuly F, et al. Visualization of Central European tick-borne encephalitis infection in fatal human cases. J Neuropathol Exp Neurol, 2005;64(6):506–512.
10. Gelpi E, Preusser M, Laggner U, et al. Inflammatory response in human tick-borne encephalitis: analysis of postmortem brain tissue. J Neurovirol, 2006;12(4):322–327.
11. Gritsun TS, Lashkevich VA, Gould EA. Tick-borne encephalitis. Antiviral Res, 2003;57(1–2):129–146.
12. Günther G, Haglund M, Lindquist L, et al. Intrathecal production of neopterin and beta 2 microglobulin in tick-borne encephalitis (TBE) compared to meningoencephalitis of other etiology. Scand J Infect Dis, 1996;28(2):131–138.
13. Chekhonin VP, Zhirkov YA, Belyaeva IA, et al. Serum time course of two brain-specific proteins, alpha(1) brain globulin and neuron-specific enolase, in tick-born encephalitis and Lyme disease. Clin Chim Acta, 2002;320(1–2):117–125.
14. Chrdle A. Terapie klíšťové encefalitidy. In: Růžek D a kol. Klíšťová encefalitida. Praha: Grada; 2015.
15. Kaiser R, Holzmann H. Laboratory findings in tick-borne encephalitis - correlation with clinical outcome. Infection, 2000;28(2):78–84.
16. Kang X, Li Y, Wei J, et al. Elevation of matrix metalloproteinase-9 level in cerebrospinal fluid of tick-borne encephalitis patients is associated with IgG extravassation and disease severity. PLoS One, 2013;8(11):e77427.
17. Kindberg E, Mickiene A, Ax C, et al. A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis. J Infect Dis, 2008;197(2):266–269.
18. Kindberg E, Vene S, Mickiene A, et al. A functional Toll-like receptor 3 gene (TLR3) may be a risk factor for tick-borne encephalitis virus (TBEV) infection. J Infect Dis, 2011;203(4):523–528.
19. Kleiter I, Jilg W, Bogdahn U, et al. Delayed humoral immunity in a patient with severe tick-borne encephalitis after complete active vaccination. Infection, 2007;35(1):26–29.
20. Kreil TR, Eibl MM. Pre- and postexposure protection by passive immunoglobulin but no enhancement of infection with a flavivirus in a mouse model. J Virol, 1997;71(4):2921–2927.
21. Kříž B, Beneš C, Daniel M. Alimentary transmission of tick-borne encephalitis in the Czech Republic (1997–2008). Epidemiol Mikrobiol Imunol, 2009;58(2):98–103.
22. Kříž B, Beneš C, Daniel M, et al. Incidence of tick-borne encephalitis in the czech republic in 2001–2011 in different administrative regions and municipalities with extended power. Epidemiol Mikrobiol Imunol, 2013;62(1):9–18.
23. Krylova NV, Leonova GN. Comparative in vitro study of the effectiveness of various immunomodulating substances in tick-borne encephalitis. Vopr Virusol, 2001;46(1):25–28.
24. Labuda M, Austyn JM, Zuffova E, et al. Importance of localized skin infection in tick-borne encephalitis virus transmission. Virology, 1996;219(2):357–366.
25. Lani R, Moghaddam E, Haghani A, et al. Tick-borne viruses: a review from the perspective of therapeutic approaches. Ticks Tick Borne Dis, 2014;5(5):457–465.
26. Lindquist L. Tick-borne encephalitis. Handb Clin Neurol, 2014;123:531–559.
27. Málková D, Filip O. Histological picture in the place of inoculation and in lymph nodes of mice after subcutaneous infection with tick-borne encephalitis virus. Acta Virol, 1968;12(4):355–360.
28. Mansfield KL, Johnson N, Phipps LP, et al. Tick-borne encephalitis virus – a review of an emerging zoonosis. J Gen Virol, 2009;90(Pt 8):1781–1794.
29. Mayer V, Kozuch O. Study of the virulence of tick-borne encephalitis virus. XI. Genetic heterogeneity of the virus from naturally infectious Ixodes ricinus ticks. Acta Virol, 1969;13(6):469–482.
30. Mickienė A, Pakalnienė J, Nordgren J, et al. Polymorphisms in chemokine receptor 5 and Toll-like receptor 3 genes are risk factors for clinical tick-borne encephalitis in the Lithuanian population. PLoS One, 2014;9(9):e106798.
31. Nuttall PA, Labuda M. Dynamics of infection in tick vectors and at the tick-host interface. Adv Virus Res, 2003;60:233–272.
32. Osolodkin DI, Kozlovskaya LI, Dueva EV, et al. Inhibitors of tick-borne flavivirus reproduction from structure-based virtual screening. ACS Med Chem Lett, 2013;4(9):869–874.
33. Ozherelkov SV, Kalinina ES, Kozhevnikova TN, et al. Experimental study of the phenomenon of antibody dependent tick-borne encephalitis virus infectivity enhancement in vitro. Zh Mikrobiol Epidemiol Immunobiol, 2008;(6):39–43.
34. Palus M, Bílý T, Elsterová J, et al. Infection and injury of human astrocytes by tick-borne encephalitis virus. J Gen Virol, 2014;95(Pt 11):2411–2426.
35. Palus M, Formanová P, Salát J, et al. Analysis of serum levels of cytokines, chemokines, growth factors, and monoamine neurotransmitters in patients with tick-borne encephalitis: identification of novel inflammatory markers with implications for pathogenesis. J Med Virol, 2015;87(5):885–892.
36. Palus M, Vojtíšková J, Salát J, et al. Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. J Neuroinflammation, 2013;10:77.
37. Palus M, Žampachová E, Elsterová J, et al. Serum matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels in patients with tick-borne encephalitis. J Infect, 2014;68(2):165–169.
38. Paul R, Lorenzl S, Koedel U, et al. Matrix metalloproteinases contribute to the blood-brain barrier disruption during bacterial meningitis. Ann Neurol, 1998;44(4):592–600.
39. Prikhod‘ko GG, Prikhod‘ko EA, Pletnev AG, et al. Langat flavivirus protease NS3 binds caspase-8 and induces apoptosis. J Virol, 2002;76(11):5701–5710.
40. Rabel PO, Planitzer CB, Farcet MR, et al. Tick-borne encephalitis virus-neutralizing antibodies in different immunoglobulin preparations. Clin Vaccine Immunol, 2012;19(4):623–625.
41. Roe K, Kumar M, Lum S, et al. West Nile virus-induced disruption of the blood-brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases. J Gen Virol, 2012;93(Pt 6):1193–1203.
42. Rosenberg GA, Dencoff JE, Correa N Jr, et al. Effect of steroids on CSF matrix metalloproteinases in multiple sclerosis: relation to blood-brain barrier injury. Neurology, 1996;46(6):1626–1632.
43. Roy A, Phares TW, Koprowski H, et al. Failure to open the blood-brain barrier and deliver immune effectors to central nervous system tissues leads to the lethal outcome of silver-haired bat rabies virus infection. J Virol, 2007;81(3):1110–1118.
44. Roy A, Hooper DC. Lethal silver-haired bat rabies virus infection can be prevented by opening the blood-brain barrier. J Virol, 2007;81(15):7993–7998.
45. Růžek D, Dobler G, Donoso Mantke O. Tick-borne encephalitis: pathogenesis and clinical implications. Travel Med Infect Dis, 2010;8(4):223–232.
46. Růžek D, Vancová M, Tesarová M, et al. Morphological changes in human neural cells following tick-borne encephalitis virus infection. J Gen Virol, 2009;90(Pt 7):1649–1658.
47. Růžek D, Salát J, Palus M, et al. CD8+ T-cells mediate immunopathology in tick-borne encephalitis. Virology, 2009;384(1):1–6.
48. Růžek D, Salát J, Singh SK, et al. Breakdown of the blood-brain barrier during tick-borne encephalitis in mice is not dependent on CD8+ T-cells. PLoS One, 2011;6(5):e20472.
49. Růžek D, Gritsun TS, Forrester NL, et al. Mutations in the NS2B and NS3 genes affect mouse neuroinvasiveness of a Western European field strain of tick-borne encephalitis virus. Virology, 2008;374(2):249–255.
50. Růžek D, Dobler G, Niller HH. May early intervention with high dose intravenous immunoglobulin pose a potentially successful treatment for severe cases of tick-borne encephalitis? BMC Infect Dis, 2013;13:306.
51. Schnoor M, Parkos CA. Disassembly of endothelial and epithelial junctions during leukocyte transmigration. Front Biosci, 2008;13:6638–6652.
52. Strazielle N, Ghersi-Egea JF. Factors affecting delivery of antiviral drugs to the brain. Rev Med Virol, 2005;15(2):105–133.
53. Udintseva IN, Bartfel‘t NN, Zhukova NG, et al. Mexidol in the complex treatment of patients in the acute period of tick borne encephalitis. Zh Nevrol Psikhiatr Im S S Korsakova, 2012;112(8):34–38.
54. Wang L, Cao Y, Tang Q, et al. Role of the blood-brain barrier in rabies virus infection and protection. Protein Cell, 2013;4(12):901–903.
Labels
Hygiene and epidemiology Medical virology Clinical microbiologyArticle was published in
Epidemiology, Microbiology, Immunology
2015 Issue 4
Most read in this issue
- Benign acute childhood myositis as a complication of influenza B and its differential diagnosis
- Human hantavirus diseases – still neglected zoonoses?
- Toxic shock syndrome
- The role of Streptococcus mutans in the oral biofilm