New therapeutic modalities in the treatment of childhood acute lymphoblastic leukemia
Authors:
Šrámková Lucie
Authors‘ workplace:
Klinika dětské hematologie a onkologie, 2. lékařská fakulta Univerzity Karlovy a Fakultní nemocnice v Motole, Praha
Published in:
Čes-slov Pediat 2022; 77 (5): 265-271.
Category:
Comprehensive Report
doi:
https://doi.org/10.55095/CSPediatrie2022/042
Overview
Acute lymphoblastic leukemia (ALL) in children is a disease with a good chance of cure on current modern treatment protocols. Nevertheless, 10-15 % of children experience a relapse of the disease, some of them are already resistant to chemotherapy and require the use of additional treatment modalities. Of these new treatments, immunotherapy and other targeted drugs are already being used in current clinical practice, which have a very good effect even in significantly pre-treated patients and are gradually changing the concept of ALL treatment.
Keywords:
acute lymphoblastic leukemia – immunotherapy – relapse – targeted therapy
Sources
1. Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med 2015; 373(16): 1541–1552. doi: 10.1056/NEJMra1400972.
2. Schmiegelow K, Attarbaschi A, Barzilai S, et al. Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: a Delphi consensus. Lancet Oncol 2016; 17(6): e231–e239. doi: 10.1016/S1470-2045(16)30035-3.
3. Gruen A, Exner S, Kühl J-S, et al. Total body irradiation as part of conditioning regimens in childhood leukemia-long-term outcome, toxicity, and secondary malignancies. Strahlentherapie und Onkol Organ der Dtsch Rontgengesellschaft 2022; 198(1): 33–38. doi: 10.1007/s00066-021-01810-4.
4. Richards S, Pui C, Gayon P. Systematic Review and Meta-Analysis of Randomized Trials of Central Nervous System Directed Therapy for Childhood Acute Lymphoblastic Leukemia. 2013: 185–195. doi: 10.1002/pbc.
5. Irving J, Enshaei A, Parker C, et al. Integration of genetic and clinical risk factors improves prognostication in relapsed childhood B-cell precursor acute lymphoblastic leukemia. Blood 2016; 128(7): 911–922. doi: 10.1182/ blood-2016-03-704973.
6. Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 2009; 10(2): 125–134. doi: 10.1016/S1470-2045(08)70339-5.
7. Roberts KG, Li Y, Payne-Turner D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 2014; 371(11): 1005–1015. doi: 10.1056/NEJMoa1403088.
8. iu Y, Easton J, Shao Y, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet 2017; 49(8): 1211–1218. doi: 10.1038/ng.3909.
9. Richter-Pechańska P, Kunz JB, Hof J, et al. Identification of a genetically defined ultra-high-risk group in relapsed pediatric T lymphoblastic leukemia. Blood Cancer J 2017; 7(2). doi: 10.1038/bcj.2017.3
10. van Dongen JJ, Seriu T, Panzer-Grümayer ER, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet (London, England) 1998; 352(9142): 1731–1738. doi: 10.1016/ S0140-6736(98)04058-6.
11. Conter V, Bartram CR, Valsecchi MG, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood 2010; 115(16): 3206–3214. doi: 10.1182/blood-2009-10-248146.
12. Fronkova E, Mejstrikova E, Avigad S, et al. Minimal residual disease (MRD) analysis in the non-MRD-based ALL IC-BFM 2002 protocol for childhood ALL: Is it possible to avoid MRD testing? Leukemia 2008; 22(5): 989–997. doi: 10.1038/leu.2008.22.
13. Raponi S, Stefania De Propris M, Intoppa S, et al. Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia: Analysis of 552 cases. Leuk Lymphoma 2011; 52(6): 1098–1107. doi: 10.3109/10428194.2011.559668.
14. Hoffmann P, Hofmeister R, Brischwein K, et al. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer 2005; 115(1): 98–104. doi: 10.1002/ ijc.20908.
15. Dreier T, Lorenczewski G, Brandl C, et al. Extremely potent, rapid and costimulation- independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer 2002; 100(6): 690–697. doi: 10.1002/ijc.10557.
16. Löffler A, Gruen M, Wuchter C, et al. Efficient elimination of chronic lymphocytic leukaemia B cells by autologous T cells with a bispecific anti-CD19/ anti-CD3 single-chain antibody construct. Leukemia 2003; 17(5): 900–909. doi: 10.1038/sj.leu.2402890.
17. Bargou R, Leo E, Zugmaier G, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 2008; 321(5891): 974–977. doi: 10.1126/science.1158545.
18. Topp MS, Gökbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol 2015; 16(1): 57–66. doi: 10.1016/S1470-2045(14) 71170-2.
19. Topp MS, Kufer P, Gökbuget N, et al. Targeted therapy with the T- -cell –Engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 2011; 29(18): 2493–2498. doi: 10.1200/JCO.2010.32. 7270.
20. Von Stackelberg A, Locatelli F, Zugmaier G, et al. Phase I/Phase II study of blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. J Clin Oncol 2016; 34(36). doi: 10.1200/ JCO.2016.67.3301.
21. Shah NN, Stevenson MS, Yuan CM, et al. Characterization of CD22 expression in acute lymphoblastic leukemia. Pediatr Blood Cancer 2015; 62(6): 964–969. doi: 10.1002/pbc.25410.
22. Kantarjian H, Thomas D, Jorgensen J, et al. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: A phase 2 study. Lancet Oncol 2012; 13(4): 403–411. doi: 10.1016/S1470-2045(11)70386-2.
23. Bhojwani D, Sposto R, Shah NN, et al. Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia 2019; 33(4): 884–892. doi: 10.1038/s41375-018-0265-z.
24. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med 2018; 378(5). doi: 10.1056/NEJMoa1709866.
25. Park JH, Rivière I, Gonen M, et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N Engl J Med 2018; 378(5): 449- 459. doi: 10.1056/NEJMoa1709919.
26. Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet 2015; 385(9967): 517-528. doi: 10.1016/S0140-6736(14)61403-3.
27. Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368(16): 1509-1518. doi: 10.1056/NEJMoa1215134.
28. Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 2015; 125(26). doi: 10.1182/blood-2014-12-580068.
29. Bride KL, Vincent TL, Im SY , et al. Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia. Blood 2018; 131(9): 995–999. doi: 10.1182/blood-2017-07-794214.
30. Vakrmanová B, Nováková M, Říha P, et al. CD38: A target in relapsed/ refractory acute lymphoblastic leukemia-Limitations in treatment and diagnostics. Pediatr Blood Cancer 2022: e29779. doi: 10.1002/pbc. 29779.
31. Schultz KR, Carroll A, Heerema NA, et al. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group study AALL0031. Leukemia 2014; 28(7): 1467–1471. doi: 10.1038/leu.2014.30.
32. Horton TM, Pati D, Plon SE, et al. A phase 1 study of the proteasome inhibitor bortezomib in pediatric patients with refractory leukemia: A children’s oncology group study. Clin Cancer Res 2007; 13(5): 1516–1522. doi: 10.1158/1078-0432.CCR-06-2173.
33. Messinger YH, Gaynon PS, Sposto R, et al. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL ) Study. Blood 2012; 120(2): 285–290. doi: 10.1182/blood-2012-04- 418640.
34. Bonvini P, Zorzi E, Basso G, Rosolen A. Bortezomib-mediated 26S proteasome inhibition causes cell-cycle arrest and induces apoptosis in CD-30+ anaplastic large cell lymphoma [16]. Leukemia 2007; 21(4): 838–842. doi: 10.1038/sj.leu.2404528.
35. Gelman JS, Sironi J, Berezniuk I, et al. Alterations of the Intracellular Peptidome in Response to the Proteasome Inhibitor Bortezomib. PLoS One 2013; 8(1). doi: 10.1371/journal.pone.0053263.
36. Junk S, Cario G, Wittner N, et al. Bortezomib treatment can overcome glucocorticoid resistance in childhood B-cell precursor acute lymphoblastic leukemia cell lines. Klin Padiatr 2015; 227(3): 123–130. doi: 10.1055/s- 0034-1398628.
37. Landis-Piwowar KR, Milacic V, Chen D, et al. The proteasome as a potential target for novel anticancer drugs and chemosensitizers. Drug Resist Updat 2006; 9(6): 263–273. doi: 10.1016/j.drup.2006.11.001.
38. Adams J. Preclinical and clinical evaluation of proteasome inhibitor PS-341 for the treatment of cancer. Curr Opin Chem Biol 2002; 6(4): 493–500.
39. Gibson A, Trabal A, McCall D, et al. Venetoclax for Children and Adolescents with Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Cancers (Basel) 2021; 14(1). doi: 10.3390/cancers14010150.
40. Pullarkat VA, Lacayo NJ, Jabbour E, et al. Venetoclax and Navitoclax in Combination with Chemotherapy in Patients with Relapsed or Refractory Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Cancer Discov 2021; 11(6): 1440–1453. doi: 10.1158/2159-8290.CD-20-1465.
Labels
Neonatology Paediatrics General practitioner for children and adolescentsArticle was published in
Czech-Slovak Pediatrics
2022 Issue 5
Most read in this issue
- Hemorrhagic disease of the newborn caused by vitamin K deficiency
- Disseminated intravascular coagulation in children
- Algorithm for recognition a seriously ill child
- Inherited coagulation disorders