Effect of gastroesophageal reflux on cilia in upper respiratory tract in children
Authors:
Júlia Kvaššayová 1,2; P. Ďurdík 1,2; V. Kučeravá 1; Dáša Oppová 1,2; D. Šutvajová 1
Authors‘ workplace:
Klinika detí a dorastu, Jesseniova lekárska fakulta v Martine, Univerzita Komenského v Bratislave, Univerzitná nemocnica Martin, Slovensko
1; Centrum experimentálnej a klinickej respirológie, Jesseniova lekárska fakulta v Martine, Univerzita Komenského v Bratislave, Univerzitná nemocnica Martin, Slovensko
2
Published in:
Čes-slov Pediat 2021; 76 (6): 296-303.
Category:
Original Papers
Overview
Introduction: Cilia are complex cellular organelles located on the surface of most cells in the body. They are an important component of mucocular transport, which provides cleansing of the airways. Gastroesophageal reflux disease (GER) is very often associated with typical extraesophageal symptomatology (rhinitis, sinusitis, cough, wheezing, etc.) in childhood, which is often a manifestation of impaired mucoliary clearance of the airways.
Objective: Influence gastroesophageal reflux of the ciliary kinematics.
Methodology: Prospective study from 2017–2019 realised at the Department of Children and Adolescents of University Hospital in Martin, pediatric patients aged 4 to 18 years were included, with suspected suspicion of gastroesophageal or extraesophageal reflux with extraesophageal symptomatology. All patients underwent a 24-hour multichannel intraluminal impedance with pH-metry and a sample of the upper airway respiratory epithelial mucosa was taken from the concha nasalis inferior. The sample was seen under a light microscope, short videos were recorded, and the frequency of cilia oscillations was evaluated using special software. Evaluated 24-hour MII with pH-metrics manually, results compared with ciliary frequency measurements in patients with GERD. The control group for comparing the frequency of ciliary kinematics consisted of healthy individuals.
Results: 40 patients with GERD were enrolled. Male prevalence was higher (55%). The ciliary kinematics in patients with GERD was significantly lower than in the control group (4.43 Hz±2.2 Hz vs. 6.86 Hz±0.96 Hz, p<0.001). In 6 patients, a control sample of cilia was performed after 6 months, where there was a significant increase in ciliary kinematics on GERD treatment (4.08 Hz±1.7 Hz vs. 5.39 Hz±0.69 Hz).
Conclusion: Based on our results to date, it can be stated that in patients with GERD/EER there is a decrease in ciliary kinematics compared to the control group. We consider the low number of individuals to be a limitation.
Keywords:
gastroesophageal reflux – Pediatrics – secondary targetiopathy – ciliary kinematics – multichannel intraluminal impedance – GERD – EER
Sources
1. Bergmann C. Educational paper: ciliopathies. Eur J Pediatr 2012; 171 (9): 1285–1300.
2. Waters AM, Beales PL. Ciliopathies: an expanding disease spectrum. Pediatr Nephrol 2011; 26 (7): 386–402.
3. Marušiaková L, Ďurdík P, Jošková M, et al. Cíliopatie v detskom veku, Pediatria (Bratisl) 2015; 10 (4): 199–205.
4. Ďurdík P, Bánovčin P. Primary ciliary dyskinesia – current therapeutic approach. In: Jeseňák M. Advances in Respiratory Therapy Research. New York: Nova Science Publishers Ic 2015; 157–176. ISBN: 978-1-63463-004-7.
5. Marusiakova L, Durdik P, Jesenak M, et al. Ciliary beat frequency in children with adenoid hypertrophy. Pediatr Pulmonol 2020; 55: 666–673. https://doi.org/10.1002/ppul.24622.
6. Behan L, Dimitrov BD, Kuehni CE, et al. PICADAR: a diagnostic predictive tool for primary ciliary dyskinesia. Eur Respir J 2016; 47: 1103–1112. https://doi.org/10.1183/13993003.01551- 2015.
7. Marušiaková L, Ďurdík P, Bacmaňáková I, et al. Čo sa môže skrývať za diagnózou atypickej cystickej fibrózy? Čes-slov Pediat 2016; 71 (2): 80–86.
8. Kasajová J, Ďurdík P, Kapustová L, et al. Gastroezofágový reflux u detských pacientov ako príčina sekundárnych cíliopatií. Pediatria (Bratisl) 2017; 12 (5): 248–250.
9. Ďurdík P, Marušiaková L, Šujanská A, et al. Diagnostika primárnej ciliárnej dyskinézy na Slovensku. Pediatria (Bratisl) 2015; 10 (6): 293–297.
10. Brndiarová M, Mikler J, Bánovčin P, et al. Extraezofágový reflux – otolaryngologické komplikácie gastroezofágového refluxu. Čes-slov Pediat 2011; 66 (2): 85–91.
11. Fraser-Kirk K. Laryngopharyngeal reflux: A confounding cause of aerodigestive dysfunction. Aust Fam Physician 2017; 1–2: 34–39.
12. Galván AP, Hart SP, Morice AH. Relationship between gastro-oesophageal reflux and airway diseases: The airway reflux paradigm. Arch Bronchopneumol 2011; 47 (4): 195–203.
13. Oleárová A. Gagastroezofageálny reflux u detí. Prakt Lékárn 2015; 5 (1): 6–10.
14. Zelník K, Komínek P, Chlumský J. Extraezofageální reflux. Príručka pro praxi. 1. vyd. Praha: Merck spol s.r.o., 2013: 2–7.
15. Ďuríček M, Bánovčin P Jr, Haličková T, et al. Acidic pharyngeal reflux does not correlate with symptoms and laryngeal injury attributed to laryngopharyngeal reflux. Dig Dis Sci 2019; 64: 1270–1280. https://doi.org/10.1007/s10620-018-5372-1.
16. Ďuríček M, Nosaková L, Zaťko T, et al. Cough reflex sensitivity does not correlate with the esophageal sensitivity to acid in patients with gastroesophageal reflux disease. Respir Physiol Neurobiol 2018; 257: 25–29. https://doi.org/10.1016/j. resp.2018.03.011.
17. Bertrand B, Collet S, Eloy P, et al. Secodary ciliary dyskinesia in upper respiratory tract. Acta Otorhinolaryngol Belg 2000; 53 (3): 309–316.
18. Hassel E. Decisions in diagnosing and managing chronic gastroesophrageal reflux disease in children. J Pediatr 2005; 146: 3–12.
19. Barbato A, Fischer T, Kuehni CE, et al. Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur Respir J 2009; 34 (6): 1264–1276.
20. Amirav I, Mussaffi H, Roth Y, et al. A reach-out system for video microscopy analysis of ciliary motions aiding PCD diagnosis. BMC Res Notes 2015; 71 (8).
21. Mousa H, Machado R, Orsi M, et al. Combined multichannel intraluminal impedance- pH(MII-pH): multicenter report of normal values from 117 children. Curr Gastroenterol Rep 2014; 16 (8): 400.
22. Gunasagaran HL, Varjavandi V, Lemberg DA, et al. The utility of multichannel intraluminal impedance-pH testing in tailoring the managment of paediatric gastrooesophageal reflux disease. Acta Paediatr 2020; 109 (12): 2799–2807.
23. Safe M, Cho J, Krishnan U. Combined multichannel intraluminal impedance and pH measurement in detecting gastroesophageal reflux disease in children. JPGN 2016; 63 (5): 98–106.
24. Brndiarová M, Antonyová M, Dedinská I, et al. Nephronophthisis type I, left ventricular non-compaction cardiomyopathy and reduced cilia motility – atypical manifestations of one disease. J Nephrol 2020; 33 (1): 183–186.
25. Galos F, Boboc C, Balgradean M, et al. Gas reflux in children with normal acid exposure of the oesophagus. Maedica (Bucur) 2016; 11 (4): 345–348.
26. Brandtl P, Lukáš K, Turzíková J, et al. Extraezofageální refluxní choroba – mezioborový konsenzus. Čas Lék čes 2011; 150: 513–518.
27. Mattioli G, Pini-Prato A, Gentilino V, et al. Esophageal impedance/ pH monitoring in pediatric patients: preliminary experience with 50 cases. Dig Dis Sci 2006; 51: 2341–2347.
28. Vasu PK, Gopalankutty NV, Somayaji G. Does laryngopharyngeal reflux disease impair nasal mucociliary transport? A case control prospective study. Int J Otorhinolaryngol Head Neck Surg 2020; 6 (4): 1–5.
29. Issing WJ, Karkos PD. Atypical manifestation of gastro-oesophageal reflux. J R Soc Med 2003; 96: 477–480.
30. Delhay E, Dore MP, Bozzo C, et al. Correlation between nasal mucociliary clearance time and gastroesophageal reflux disease: our experience on 50 patients. Auris Nasus Larynx 2009; 33 (2): 157–161.
31. Bothwell MR, Parsons DS, Talbot A, et al. Outcome of reflux therapy on pediatric chronic sinusitis. Otolaryngol Head Neck Surg 1999; 121: 255–262.
32. Hayat JO, Gabieta-Somnez S, Yazaki E, et al. Pepsin in saliva for the diagnosis of gastro-oesophageal reflux disease. Gut 2015; 64: 373-380. doi: 10.1136/gutjnl-2014-307049373.
33. Formánek M, Jančatová D, Komínek P, et al. Comparison of impedance an pepsin detection in the laryngeal mucosa to determine impedance values that indicate pathological laryngopharyngeal reflux. Clin Transl Gastroenterol 2017; 8 (123). doi: 10.1038/ctg2017.49.
34. Li Y, Sifrim D, Xie Ch, et al. Relationship between salivary pepsín concentration and esophageal mucosal integrity in patients with gastroesophageal reflux disease. J Neurogastroenterol Motil 2017; 23 (4): 517–525.
35. Syrovátka J, Komínek P, Matoušek P, et al. Diagnostika extraezofageálního refluxu u detí se sekretorickou otitídou. Otorinolaryngol Foniatr 2014; 63 (4): 68–74.
36. Koniar D, Hargaš L, Štofan S. Segmentation of motion regions for biomechanical systems. Procedia Engineering 2012; 48: 304–311.
37. Lucas JS, Barbato A, Collins SA, et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J 2017; 49: 1–25. 1601090 [https://doi.org/10.1183/ 13993003.01090-2016].
38. Zeleník K, Schwarz P, Urban O, et al. Extraezofageální reflux up to-date. Čes a Slov Gastroent a Hepatol 2010; 64 (6): 10–14.
Labels
Neonatology Paediatrics General practitioner for children and adolescentsArticle was published in
Czech-Slovak Pediatrics
2021 Issue 6
Most read in this issue
- Edwards syndrome – phenotype, prognosis, ethical attitudes, professional and palliative care
- Not every hemangioma is a hemangioma...
- Systemic lupus erythematosus with hematological symptoms – a multifaceted disease: case reports and summary for clinical practice
- Specifics of care for tracheostomized pediatric patients – relevant topic