#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Hypothalamic-hypophyseal dysfunction in children and adolescents after brain injury – a prospective observation


Authors: D. Aleksijević 1;  V. Smolka 1;  E. Klásková 1;  V. Mihál 1;  J. Wiedermann 1;  P. Venháčová 1;  D. Krahulík 2;  J. Zapletalová 1
Authors‘ workplace: Dětská klinika LF UP a FN, Olomouc přednosta prof. MUDr. V. Mihál, CSc. 1;  Neurochirurgická klinika LF UP a FN, Olomouc přednosta prof. MUDr. M. Houdek, CSc. 2
Published in: Čes-slov Pediat 2012; 67 (4): 234-241.
Category: Original Papers

Overview

Introduction:
The neuroendocrine dysfunction following brain injury is described in 23–60% of adults and 15–21% of children in retrospective studies.

Aim of study:
To find out the prevalence of the hypothalamo-hypophyseal dysfunction in children after a brain injury and its dependence on the type of injury and the course of acute post-traumatic phase by prospective study during a twelve month period.

Patients and methods:
We evaluated growth, pubertal development and bone age in 58 patients (29 boys) after brain trauma. They underwent standard endocrine tests – TSH, fT4, IGF-1, PRL, morning cortisol, FSH, LH, testosterone (in boys), estradiol (in girls) in early post-traumatic period (2–14 days, T0) and in 3, 6 a 12 months after the injury (T3, T6 a T12). Dynamics tests were performed in patients with abnormalities in clinical examination and/or laboratory results. MRI was made in all patients in T12.

Results:
The median of age in time of an injury was 11.3 (0.5–18.7) years. Twenty three patients had GCS <8/15. In T0 diabetes insipidus (DI) occurred in 12 patients and a syndrome of inappropriate antidiuretic hormone (SIADH) in 4 patients. Hormonal changes simulated a central hypothyroidism (in 45% of patients) and a hypogonadotropic hypogonadism (in 25% of adolescents who were in time of injury in puberty ≥ Tanner 2). Combined pituitary hormones deficiency was found in 2 boys and DI in one patient in T3. In T6 hormonal dysfunctions were found in two boys (a precocious puberty and a growth hormone deficiency). In T12 a new endocrine dysfunction was diagnosed in five patients (two of them had a growth hormone deficiency, two had a hypogonadotropic hypogonadism and in one patient with a growth hormone deficiency a central hypothyroidism was confirmed). An empty sella has been found on MRI in two patients with a growth hormone deficiency. Patients with GCS ≤8/15 had hormonal dysfunction on T12 more often compared to those with a medium trauma and also DI or SIADH in acute posttraumatic period 11/23 vs. 4/35. The occurrence of early endocrine dysfunction significantly correlated with severity of injury (p≤0.05), but did not serve as a strong indicator of development of late hormonal dysfunction (p=0.5).

Conclusion:
Within a year from an injury hormonal disorder has occurred in 7 z 39 (17.9%) of patients. Neuroendocrine dysfunction as late a consequence of craniocerebral trauma is not as frequent in children as in adults. Risk factors influencing its development include severity of injury, abnormalities in the brain-imaging techniques and DI or SIADH in acute posttraumatic phase.

Key words:
traumatic brain injury, children, posttraumatic hormonal disorder, growth hormone deficiency, precocious puberty, risk factors


Sources

1. Masson F, Salmi LR, Maurette P. Characteristics of head trauma in children: epidemiology and 5-years folow up. Arch Pediatr 1996; 3: 651–660.

2. Schneler AJ, Schields BJ, Hostetler SG, et al. Incidence of pediatric brain injury and associated hospital resource utilization in the United States. Pediatrics 2006; 118: 483–492.

3. Cyran E. Hypophysisenschadigung durch Schadelbasis fracture. Dtsch Med Wochenschr 1918; 44: 1261–1270.

4. Escamilla RF, Lisser H. Simmonds disease. J Clin Endocrinol Metab 1942; 2: 65–96.

5. Ceballos R. Pituitary changes in head trauma. Analysis of 102 consecutive cases of head injury. Alabama J Med Sci 1966; 3: 185–198.

6. Crompton MR. Hypothalamic lesions folowing closed head injury. Brain 1971; 94: 165–172.

7. Harper CG, Doyle D, Hume AJ, Graham DI. Analysis of abnormalities in pituitary gland in non-missile head injury: study of 100 consecutives cases. J Clin Pathol 1986; 39: 769–773.

8. Agha A, Rogers B, Myllote D, et al. Neuroendocrine dysfunction in the acute phase of traumatic brain injury. Clin Endocrinol 2004; 60: 584–591.

9. Woolf PD. Hormonal response to trauma. Crit Care Med 1992; 20: 216–226.

10. Benvenga S, Campenni A, Ruggeri RM, Trimarchi F. Hypopituitarism secondary to head trauma. J Clin Endocrinol Metab 2000; 85: 1353–1360.

11. Kelly DF, Gonzalo IT, Cohan P, et al. Hypopituitarism following traumatic brain injury and aneurysmal subarachnoid hemorage: a preliminary report. J Neurosurg 2000; 93: 743–752.

12. Lieberman SA, Oberoi AL, Gilkison CR, Masel BE, Urban RJ. Prevalence of neuroendocrine dysfunction in patients recovering drom traumatic brain injury. J Clin Endocrinol Metab 2001; 86: 2752–2756.

13. Bondanelli M, De Marinis L, Ambrosio MR, et al. Occurence of pituitary dysfunction following traumatic brain injury. J Neurotr 2004; 21: 685–696.

14. Aimaretti G, Ambrosio MR, Di Somma C, et al. Residual pituitary function after brain injury-induced hypopituitarism: a prospective 12-month study. J Clin Endocrinol Metab 2005; 90: 6085–6092.

15. Agha A, Thompson CJ. Anterior pituitary dysfunction following traumatic brain injury (TBI). Clin Endocrinol 2006; 64: 481–488.

16. Klose M, Juul A, Struck J, Morgenthaler G, et al. Acute and long –term pituitary insufficiency in traumatic brain injury: a prospective single centre study. Clin Endocrinol 2007; 67: 598–606.

17. Krahulík D, Zapletalová J, Fryšák Z, Vaverka M. Dysfunction of hypothalamo-hypophyseal axis after traumatic brain injury in adults. J Neurosurg 2009; Nov 20, DOI, 10.3171/2009.10.JNS09930.

18. Urban RJ, Harris P, Massel B. Anterior hypopituitarism following traumatic brain injury. Brain Inj 2005; 19 (5): 349–358.

19. Sockalosky JJ, Kriel RL, Krach LE, Sheehan M. Precocious puberty after traumatic brain injury. J Pediat 1987; 110 (3): 373–377.

20. Goldman M, Shahar E, Sack J, Meyerovitch J. Assessment of endocrine function in children folowing severe head trauma. Pediat Neurol 1997; 17 (4): 339–343.

21. Niederland T, Makovi H, Gál V, Andéka B, Ábrahám CS, Kovács J. Abnormalities of pituitary function after traumatic brain injury in children. J Neurotr 2007; 24: 119–127.

22. Einaudi S, Matarazzo P, Peretta P, et al. Hypothalamo-hypophyseal dysfunction after traumatic brain injury in children and adolescents: A preliminary retrospective and prospective study. J Pediat Endocrinol Metab 2006; 19: 692–703.

23. Poomthavorn P, Maixner W, Zacharin M. Pituitary function in paediatric survivors of severe traumatic brain injury. Arch Dis Child 2008; 3: 133–137.

24. Aleksijevic D, Zapletalová J, Smolka V, Klásková E, Wiedermann J, Krahulík D, Vaverka M, Fryšák Z. Neuroendokrinní dysfunkce u dětí a dospívajících po úrazu mozku. Cesk Slov Neurol N 2010; 74/106 (4): 409–414.

25. Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in girls. Arch Dis Child 1969; 44: 291–303.

26. Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child 1970; 45: 13–23.

27. Bláha P, Vignerová J, Riedlová J, Kobzová J, Krejčovský L. VI. celostátní antropologický výzkum dětí a mládeže 2001. Čes-slov Pediat 2003; 58 (12): 766–770.

28. Greuliche WW, Pyle SI. Radiographic Atlas of Skeletal Development of the Hand and Wrist. 2nd ed. Standford, CA: Stanford University Press, 1959.

29. Ranke M (Ed). Diagnostics of endocrine function in children and adolescents. Basel: Karger, 2011, PP I-IX.

Labels
Neonatology Paediatrics General practitioner for children and adolescents
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#