The Molecular Biology of Cancer: the Basics for Clinical Practice
Authors:
O. Kodet 1,2,3; L. Lacina 1,2,3
Authors‘ workplace:
Dermatovenerologická klinika 1. LF UK a VFN přednosta prof. MUDr. Jiří Štork, CSc.
1; Anatomický ústav 1. LF UK přednosta prof. MUDr. Karel Smetana, DrSc.
2; BIOCEV – Biotechnologické a biomedicínské centrum Akademie věd a Univerzity Karlovy ve Vestci u Prahy vedoucí laboratoře/senior researcher prof. MUDr. Karel Smetana, DrSc.
3
Published in:
Čes-slov Derm, 92, 2017, No. 6, p. 245-261
Category:
Reviews (Continuing Medical Education)
Overview
The molecular biology approach in tumor study has been experiencing significant development over last decades and has brought new insights into the pathogenesis of cancer. Some of them are used in practice and introduced directly into oncology care thanks to new technologies. Molecular biology has enabled the introduction of entirely new cancer treatment, so-called personalized cancer therapy, including biological therapy of tumors. In addition to cancer therapy progress, molecular biology also contributes to identification and characterization of number of biomarkers. The biomarker is a characteristic biological system feature, which can be objectively measured and used to monitor the state of organism. Molecular biology is looking for new prognostic or predictive biomarkers as well as for biomarkers improving cancer diagnostics using not only molecular genetics but also certain modifications of biochemical serum parameters or immunohistochemical tissue examination. Dermatooncology follows current trends in oncology and helps to form them in number of cases thus contributing significantly to knowledge and introduction of personalized cancer therapy.
Key words:
molecular biology – mutation – oncogenes – tumor suppressor genes – biomarkers – skin cancer – melanoma
Sources
1. AOUDE, L. G., GARTSIDE, M., JOHANSSON, P. et al. Prevalence of Germline BAP1, CDKN2A, and CDK4 Mutations in an Australian Population-Based Sample of Cutaneous Melanoma Cases. Twin Res Hum Genet., 2015, 18, p. 126–133.
2. BALCH, C. M., GERSHENWALD, J. E., SOONG, S. J. et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol., 2009, 27, p. 6199–6206.
3. BENLLOCH, S., PAYÁ, A., ALENDA, C. et al. Detection of BRAF V600E mutation in colorectal cancer: comparison of automatic sequencing and real-time chemistry methodology. J Mol Diagn., 2006, 8, p. 540–543.
4. BERTRAM, J. S. The molecular biology of cancer. Mol Aspects Med., 2000, 21, p. 167–223.
5. BOLLAG, G., HIRTH, P., TSAI, J. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 2010, 467, p. 596–599.
6. BOSSERHOFF, A. K., MOSER, M., HEIN, R. et al. In situ expression patterns of melanoma-inhibiting activity (MIA) in melanomas and breast cancers. J Pathol., 1999, 187, p. 446–454.
7. BROOKS, J. D. Translational genomics: the challenge of developing cancer biomarkers. Genome Res., 2012, 22, p. 183–187.
8. CARLSON, J. J., ROTH, J. A. The impact of the Oncotype Dx breast cancer assay in clinical practice: a systematic review and meta-analysis. Breast Cancer Res Treat., 2013, 141, p. 13–22.
9. CREE, I. A., DEANS, Z., LIGTENBERG, M. J. et al. European Society of Pathology Task Force on Quality Assurance in Molecular Pathology; Royal College of Pathologists. Guidance for laboratories performing molecular pathology for cancer patients. J Clin Pathol., 2014, 67, p. 923–931.
10. DAVIES, H., BIGNELL, G. R., COX, C. et al. Mutations of the BRAF gene in human cancer. Nature, 2002, 417, p. 949–954.
11. DIGIOVANNA, J. J., KRAEMER, K. H. Shining a light on xeroderma pigmentosum. J Invest Dermatol., 2012, 132, p. 785–796.
12. DOWNWARD, J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer., 2013, 3, p. 11–22.
13. DURAIYAN, J., GOVINDARAJAN, R., KALIYAPPAN, K. et al. Applications of immunohistochemistry. J Pharm Bioallied Sci., 2012, 4, p. 307–309.
14. DUSÍLKOVÁ, N., BÁŠOVÁ, P., POLÍVKA, J. Plasma miR-155, miR-203, and miR-205 are Biomarkers for Monitoring of Primary Cutaneous T-Cell Lymphomas. Int J Mol Sci., 2017, 18, E2136.
15. DVOŘÁNKOVÁ, B., SZABO, P., KODET, O. et al. Intercellular crosstalk in human malignant melanoma. Protoplasma., 2017, 254, p. 1143–1150.
16. ENE NICOLAE, C. D., NICOLAE, I. Interleukin 8 serum concentration, but not lactate dehydrogenase activity, positively correlates to CD34 antigen in melanoma tumors. J Immunoassay Immunochem., 2016, 37, p. 463–471.
17. ESPINOSA, A. V., PORCHIA, L., RINGEL, M. D. Targeting BRAF in thyroid cancer. Br J Cancer., 2007, 96, p. 16–20.
18. FANG, D., NGUYEN, T. K., LEISHEAR, K. et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res., 2005, 65, p. 9328–9337.
19. FEARON, E. R., VOGELSTEIN, B. A genetic model for colorectal tumorigenesis. Cell, 1990, 61, p. 759–767.
20. FORETOVÁ, L., NAVRÁTILOVÁ, M., MACHÁČKOVÁ, E. Limitace genetického testování v onkologii. Klin Onkol., 2009, 22, s. 65–68.
21. FORETOVÁ, L. Hereditary neoplastic diseases. Klin Onkol., 2012, 25, s. 6.
22. FOTH, M., WOUTERS, J., DE CHAUMONT, C. et al. Prognostic and predictive biomarkers in melanoma: an update. Expert Rev Mol Diagn., 2016, 16, p. 223–237.
23. FRIEDMAN, E.B., SHANG, S., DE, MIERA, E.V. et al. Serum microRNAs as biomarkers for recurrence in melanoma. J Transl Med., 2012, 10, p. 155.
24. GARDER, J. E., OFFIT, K. Hereditary cancer predisposition syndromes. J Clin Oncol., 2005, 10, p. 276–292.
25. GENTILE, A., TRUSOLINO, L., COMOGLIO, P. M. The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev., 2008, 27, p. 85–94.
26. GERAMI, P., LI, G., POURYAZDANPARAST, P. et al. A highly specific and discriminatory FISH assay for distinguishing between benign and malignant melanocytic neoplasms. Am J Surg Pathol. 2012, 36, p. 808–817.
27. GOYAL, G., FAN, T., SILBERSTEIN, P. T. Hereditary cancer syndromes: utilizing DNA repair deficiency as therapeutic target. Fam Cancer, 2016, 15, p. 359–366.
28. GIBNEY, G. T., WEINER, L. M., ATKINS, M. B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol., 2016, 17, p. 542–551.
29. GIROUARD, S. D., MURPHY, G. F. Melanoma stem cells: Not rare, but well done. Lab. Invest., 2011, 91, p. 647–664.
30. HA, L., MERLINO, G., SVIDERSKAYA, E.V. Melanomagenesis: Overcoming the Barrier of Melanocyte Senescence. Cell Cycle., 2008, 7, p. 1944–1948.
31. HALUSKA, F. G., TSAO, H., WU, H. et al. Genetic alterations in signaling pathways in melanoma. Clin Cancer Res., 2006, 12, p. 2301–2307.
32. HAUSCHILD, A., ENGEL, G., BRENNERM, W. et al. Predictive value of serum S100B for monitoring patients with metastatic melanoma during chemotherapy and/or immunotherapy. Br J Dermatol., 1999, 40, p. 1065–1071.
33. HOWAT, W. J., WILSON, B. A. Tissue fixation and the effect of molecular fixatives on downstream staining procedures. Methods., 2014, 70, p. 12–19.
34. CHEN, H., ZHANG, S., WU, Z. Fanconi anemia pathway defects in inherited and sporadic cancers. Transl Pediatr., 2014, 3, p. 300–304.
35. IKEHATA, H., ONO, T. The mechanisms of UV mutagenesis. J Radiat Res., 2011, 52, p. 115–125.
36. JACOBS, K. B., YEAGER, M., ZHOU, W. et al. Detectable Clonal Mosaicism and Its Relationship to Aging and Cancer. Nature Genetics., 2012, 44, p. 651–668
37. JOHNSON, D. B., PUZANOVA, I. Treatment of NRAS-mutant melanoma. Curr Treat Options Oncol., 2015, 16, p. 15.
38. JONASON, A. S., KUNALA, S., PRICE, G. J. et al. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc Natl Acad Sci U S A., 1996, 93, p. 14025–14029.
39. JURISIC, V., RADENKOVIC, S., KONJEVIC, G. The Actual Role of LDH as Tumor Marker, Biochemical and Clinical Aspects. Adv Exp Med Biol., 2015, 867, p. 115–124.
40. KARAKOUSIS, G., YANG, R., XU, X. Circulating melanoma cells as a predictive biomarker. J Invest Dermatol., 2013, 133, p. 1460–1462.
41. KHOJA, L., LORIGAN, P., ZHOU, C. et al. Biomarker utility of circulating tumor cells in metastatic cutaneous melanoma. J Invest Dermatol., 2013, 133, p. 1582–1590.
42. KNUDSON, A. G. JR., The genetics of childhood cancer. Cancer., 1975, 35, p. 1022–1026.
43. KNUDSON, A. G. JR., MEADOWS, A. T., NICHOLS, W. W. et al. Chromosomal deletion and retinoblastoma. Engl J Med., 1976, 295, p. 1120–1123.
44. KODET, O., KRAJSOVÁ, I. Maligní melanom, incidence, rizikové faktory a jeho časná diagnostika, Onkologie., 2017, 11, s. 138–143.
45. KRAJSOVÁ, I., ARENBERGER, P., LAKOMÝ, R. Long-term Survival with Ipilimumab: Experience from a National Expanded Access Program for Patients with Melanoma. Anticancer Res., 2015, 35, p. 6303–6310.
46. KUMAR, R., ANGELINI, S., SNELLMAN, E. et al. BRAF mutations are common somatic events in melanocytic nevi. J Invest Dermatol., 2004, 122, p. 342–348.
47. LODISH, H. Molecular Cell Biology. 7 ed. 2013.
48. LONG, G. V. STROYAKOVSKIY, D., GOGAS, H. et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med., 2014, 371, p. 1877–1888.
49. MARUVADA, P., WAMG, W., WAGNER, P. D. et al. Biomarkers in molecular medicine: cancer detection and diagnosis. Biotechniques., 2005, Suppl., p. 9–15.
50. MATOS, L. L., TRUFELLI, D. C., DE MATOS, M. G. et al. Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark Insights., 2010, 9, p. 9–20.
51. MATSUMOTO, K., UMITSU, M., DE SILVA, D. M. et al. Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci., 2017, 108, p. 296–307.
52. MATTHIAS, C., MACK, B., BERGHAUS, A. et al. Keratin 8 expression in head and neck 11 epithelia. BMC Cancer, 22, p. 267.
53. MCCUBREY, J. A., STEELMAN, L. S., CHAPELL, W. H. et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta, 2007, 1773, p. 1263–1284.
54. MENON, D. R., SCHAIDER, H. Microenvironment-Driven Resistance to BRAF Inhibition Comes of Age. J Invest Dermatol., 2015, 135, p. 2923–2925.
55. MILNE, R. L., ANTONIOU, A. C. Modifiers of breast and ovarian cancer risks for BRCA1 and BRCA2 mutation carriers. Endocr Relat Cancer., 2016, 23, p. 69–84.
56. MONZANI, E., FACCHETTI, F., GALMOZZI, E. et al. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumorigenic potential. Eur J Cancer., 2007, 43, p. 935–946.
57. MUKHERJEE, N., SCHWAN, J. V., FUJITA, M. et al. Alternative Treatments For Melanoma: Targeting BCL-2 Family Members to De-Bulk and Kill Cancer Stem Cells. J Invest Dermatol., 2015, 135, p. 2155–2161.
58. MÜLLAUER, L. Milestones in pathology-from histology to molecular biology. Memo., 2017, 10, p. 42–45.
59. NEZOS, A., LEMBESSIS, P., SOURLA, A. Molecular markers detecting circulating melanoma cells by reverse transcription polymerase chain reaction: Methodological pitfalls and clinical relevance. Clin Chem Lab Med., 2009, 47, p. 1–11.
60. OLEK-HRAB, K., SILNY, W. Diagnostics in mycosis fungoides and Sezary syndrome. Rep Pract Oncol Radiother., 2013, 19, p. 72–76.
61. PLEVOVÁ, P., KRUTÍLKOVÁ, V., PUCHMAJEROVÁ, A. et al. Gorlin syndrome. Klin Onkol., 2009, 22, s. 34–35.
62. RECK, M., RODRÍGUEZ-ABREU, D., ROBINSON, A. G. et al. KEYNOTE-024 Investigators. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med., 2016, 375, p. 1823–1833.
63. REID, A. L., MILLWARD, M., PEARCE, R. et al. Markers of circulating tumour cells in the peripheral blood of patients with melanoma correlate with disease recurrence and progression. Br J Dermatol., 2013, 168, p. 85–92.
64. RIECHERS, A., BOSSERHOFF, A. K. Melanoma inhibitory activity in melanoma diagnostics and therapy – a small protein is looming large. Exp Dermatol. 2014, 23, p. 12–14.
65. RÜBBEN, A., ARAUJO, A. Cancer heterogeneity: converting a limitation into a source of biologic information. J Transl Med., 2017, 15, p. 190.
66. SALNIKOW, K., ZHITKOVICH, A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol., 2008, 21, p. 28–44.
67. SHAKHOVA, O., SOMMER, L. Testing the cancer stem cell hypothesis in melanoma: The clinics will tell. Cancer Lett., 2013, 338, p. 74–81.
68. SHENEBERGER, D. W. Cutaneous malignant melanoma: a primary care perspective. Am Fam Physician, 2012, 85, p. 161–168.
69. SHEPPARD, K. E., MCARTHUR, G. A. The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma. Clin Cancer Res., 2013, 19, p. 5320–5328.
70. SCHIFFER, J. T., AUBERT, M., WEBER, N. D. et al. Targeted DNA mutagenesis for the cure of chronic viral infections. J Virol., 2012, 86, 17, p. 8920–8936.
71. SMITH, B., SELBY, P., SOUTHGATE, J. Detection of melanoma cells in peripheral blood by means of reverse transcriptase and polymerase chain reaction. Lancet, 1991, 338, p. 1227–1229.
72. SONG, I. Y., BALMAIN, A. Cellular reprogramming in skin cancer. Semin Cancer Biol., 2015, 32, p. 32–39.
73. SONG, J., MOOI, W. J., PETRONIC-ROSIC, V. et al. Nevus versus melanoma: to FISH, or not to FISH. Adv Anat Pathol., 2011, 18, p. 229–234.
74. SUNSHINE, J. C., NGUYEN, P. L., KAUNITZ, G. J. et al. PD-L1 Expression in Melanoma: A Quantitative Immunohistochemical Antibody Comparison. Clin Cancer Res. 2017, 23, p. 4938–4944.
75. TARHINI, A. A., GOGAS, H., KIRKWOOD, J. M. IFN-α in the treatment of melanoma. J Immunol., 2012, 189, p. 3789–3793.
76. TETZLAFF, M. T., TORRES-CABALA, C. A., PATTANAPRICHAKUL, P. et al. Emerging clinical applications of selected biomarkers in melanoma. Clin Cosmet Investig Dermatol., 2015, 30, p. 35–46.
77. TIACCI, E., TRIFONOV, V., SCHIAVONI, G. et al. BRAF mutations in hairy-cell leukemia. N Engl J Med., 2011, 364, p. 2305–2315.
78. UGUREL, S., RAPPL, G., TILGEN, W. et al. Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. J Clin Oncol., 2001, 19, p. 577–583.
79. VERYKIOU, S., ELLIS, R. A., LOVAT, P. E. Established and Emerging Biomarkers in Cutaneous Malignant Melanoma. Healthcare (Basel), 2014, 2, p. 60–73.
80. VOGELSTEIN, B., KINZLER, K.W. et al. The Genetic Basis of Human Cancer. 2nd edition, p. 583–612.
81. WILCOX, R. A. Cutaneous T-cell lymphoma: 2014 update on diagnosis, risk-tratification, and management. Am J Hematol., 2014, 89, p. 837–851.
82. WOODMAN, S. E., DAVIES, M. A. Targeting KIT in melanoma: a paradigm of molecular medicine and targeted therapeutics. Biochem Pharmacol., 2010, 80, p. 568–574.
83. WU, H., SMITH, M., MILLENSON, M. M., Contribution of flow cytometry in the diagnosis of cutaneous lymphoid lesions. J Invest Dermatol., 2003, 121, p. 1522–1530.
84. WU, J. M., VONDERHIED, E., GOCKE, C. D. et al. Flow cytometry of lesional skin enhances the evaluation of cutaneous B-cell lymphomas. J Cutan Pathol., 2012, 39, p. 918–928.
85. YANHUI, F., WENJUAN, W., GUOJI, M. et al. Patterns of Insertion and Deletion in Mammalian Genomes. Curr Genomics., 2007, 8, p. 370–378.
86. YOU, Y. N., RUSTIN, R. B., SULLIVAN, J. D. Oncotype DX® colon cancer assay for prediction of recurrence risk in patients with stage II and III colon cancer: A review of the evidence. Surg Oncol., 2015, 24, p. 61–66.
87. ZHANG, Q., WANG, Y., LIANG, J. et al. Bioinformatics analysis to identify the critical genes, microRNAs and long noncoding RNAs in melanoma. Medicine (Baltimore), 2017, 96, p. 7497.
88. ZHAO, L., SAMUELS, T., WINCKLER, S. et al. Cyclin G1 has growth inhibitory activity linked to the ARF-Mdm2-p53 and pRb tumor suppressor pathways. Mol Cancer Res., 2003, 1, p. 195–206.
89. ZHOU, R., XU, A., GINGOLD, J., STROMG, L. C. et al. Li-Fraumeni Syndrome Disease Model: A Platform to Develop Precision Cancer Therapy Targeting Oncogenic p53. Trends Pharmacol Sci., 2017, 38, p. 908–927.
Labels
Dermatology & STDs Paediatric dermatology & STDs Paediatric rheumatology Medical virologyArticle was published in
Czech-Slovak Dermatology
2017 Issue 6
Most read in this issue
- Frontal Fibrosing Alopecia
- The Molecular Biology of Cancer: the Basics for Clinical Practice
- The Impact of Smoking on Selected Serum Adipokines in Patients with Psoriasis