Clinical significance of cytochrome P450 genetic polymorphism – part III. cytochrome P450 2C19
Authors:
Jana Ďuricová; Milan Grundmann
Authors‘ workplace:
Ústav klinické farmakologie Lékařské fakulty OU a FN Ostrava
Published in:
Čes. slov. Farm., 2011; 60, 211-218
Category:
Review Articles
Overview
Cytochrome P450 2C19 is the important cause for great differences in the pharmacokinetics of a number of clinically used drugs. Several studies have demonstrated that the CYP2C19 polymorphism is important for several drugs and may be associated with the occurrence of clinically relevant side effects. The third part of this paper focuses on the influence of genetic polymorphism of cytochrome P450 2C19 on drug effect.
Key words:
cytochrome P450 – genetic polymorphism – CYP2C19
Sources
1. Tamminga, W. J., Wemer, J., Oosterhuis, B., Wieling, J., Touw, D. J., de Zeeuw, R. A., de Leij, L. F., Jonkman, J. H.: Mephenytoin as a robe for CYP2C19 phenotyping: effect of sample storage, intra–individual reproducibility and occurrence of adverse events. Br. J. Clin. Pharmacol. 2001; 51, 471–474.
2. Gardiner, S. J., Begg, E. J.: Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol. Rev. 2006; 58, 521–590.
3. Wedlund, P. J. The CYP2C19 enzyme polymorphism. Pharmacology 2000; 61, 174–183.
4. Desta, Z., Zhao, X., Shin, J. G., Flockhart, D. A.: Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin. Pharmacokinet. 2002; 12, 913–958.
5. Sim, S. C., Risinger, C., Dahl, M. L., Aklillu, E., Christensen, M., Bertilsson, L., Ingelman-Sundberg, M.: A ommon novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin. Pharmacol. Ther. 2006; 79, 103–113.
6. Sagar, M., Seensalu, R., Tybring, G., Dahl, M. L., Bertilsson, L.: CYP2C19 genotype and phenotype determined with omeprazole in patients with acid-related disorders with and without Helicobacter pylori infection. Scand. J. Gastroenterol. 1998; 33, 1034–1038.
7. Uno, T., Niioka, T., Hayakari, M., Yasui-Furukori, N., Sugawara, K., Tateishi, T.: Absolute bioavailability and metabolism of omeprazole in relation to CYP2C19 genotypes following single intravenous and oral administrations. Eur. J. Clin. Pharmacol. 2007; 63, 143–149.
8. Baldwin, R. M., Ohlsson, S., Pedersen, R. S., Mwinyi, J., Ingelman-Sundberg, M., Eliasson, E., Bertilsson, L.: Increased omeprazole metabolism in carriers of the CYP2C19*17 allele, a harmacokinetic study in healthy volunteers. Br. J. Clin. Pharmacol. 2008; 65, 767–774.
9. Miura, M., Tada, H., Yasui-Furukori, N., Uno, T., Sugawara, K., Tateishi, T., Suzuki, T.: Pharmacokinetic differences between the enantiomers of lansoprazole and its metabolite, 5-hydroxylansoprazole, in relation to CYP2C19 genotypes. Eur. J. Clin. Pharmacol. 2004; 60, 623–628.
10. Miura, M., Kagaya, H., Tada, H., Uno, T., Yasui-Furukori, N., Tateishi, T., Suzuki, T.: Enantioselective disposition of rabeprazole in relation to CYP2C19 genotypes. Br. J. Clin. Pharmacol. 2005; 61, 315–320.
11. Hunfeld, N. G., Mathot, R. A., Touw, D. J., van Schaik, R. H., Mulder, P. G., Franck, P. F., Kuipers, E. J., Geus W. P.: Effect of CYP2C19*2 and *17 mutations on pharmacodynamics and kinetics of proton pump inhibitors in Caucasians. Br. J. Clin. Pharmacol. 2008; 65, 752–760.
12. Wang, Y., Zhang, H., Meng, L., Wang, M., Yuan, H., Ou, N., Zhang, H., Li, Z., Shi, R.: Influence of CYP2C19 on the relationship between pharmacokinetics and intragastric pH of omeprazole administered by successive intravenous infusions in Chinese healthy volunteers. Eur. J. Clin. Pharmacol. 2010; 66, 563–569.
13. Furuta, T., Shirai, N., Sugimoto, M., Nakamura, A., Okudaira, K., Kajimura, M., Hishida, A.: Effect of concomitant dosing of famotidine with lansoprazole on gastric acid secretion in relation to CYP2C19 genotype status. Aliment. Pharmacol. Ther. 2005; 22, 67–74.
14. Horai, Y., Kimura, K., Furuie, H., Matsuguma, K., Irie, S., Koga, Y., Nagahama, T., Murakami, M., Matsui, T., Yao, T., Urae, A., Ishizaki, T.: Pharmacodynamic effects and kinetic disposition of rabeprazole in relation to CYP2C19 genotypes. Aliment. Pharmacol. Ther. 2001; 15, 793–803.
15. Shirai, N., Furuta, T., Moriyama, Y., Okochi, H., Kobayashi, K., Takashima, M., Xiao, F., Kosuge, K., Nakagawa, K., Hanai, H., Chiba, K., Ohashi, K., Ishizaki, T.: Effects of CYP2C19 genotypic differences in the metabolism of omeprazole and rabeprazole on intragastric pH. Aliment. Pharmacol. Ther. 2001; 15, 1929–1937
16. Lou, H. Y., Chang, C. C., Sheu, M. T., Chen, Y. C., Ho, H. O.: Optimal dose regimens of esomeprazole for gastric acid suppresion with minimal influence of the CYP2C19 polymoprhism. Eur. J. Clin. Pharmacol. 2009; 65, 55–64.
17. Klotz, U.: Impact of CYP2C19 polymorphisms on the clinical action of proton pump inhibitors (PPIs). Eur. J. Clin. Pharmacol. 2009; 65, 1–2.
18. Furuta, T., Ohashi, K., Kamata, T., Takashima, M., Kosuge, K., Kawasaki, T., Hanai, H., Kubota, T., Ishizaki, T., Kaneko, E.: Effect of genetic differences in omeprazole metabolism on cure rates for Helicobacter pylori infection and peptic ulcer. Ann. Intern. Med. 1998; 129, 1027–1030.
19. Özdil, B., Akkiz, H., Bayram, S., Bekar, A., Akgöllü, E., Sandikci, M.: Influence of Cyp2C19 functional polymorphism on Helicobacter pylori eradication. Turk. J. Gastroenterol. 2010; 21, 23–28.
20. Schwab, M., Schaeffeler, E., Klotz, U., Treiber, G.: CYP2C19 polymorphism is predictor of treatment failure in white patients by use of lansoprazole-based quadruple therapy for eradication of Helicbacter pylori. Clin. Pharmacol. Ther. 2004; 76, 201–209.
21. Lay, C. S., Lin, C. J.: Correlation of CYP2C19 genetic polymorphisms with helicobacter pylori eradication in patients with cirrhosis and peptic ulcer. J. Chin. Med. Assoc. 2010; 73, 188–193.
22. Zhao, F., Wang, J., Yang, Y., Wang, X., Shi, R., Xu, Z., Huang, Z., Zhang, G.: Effect of CYP2C19 genetic polymorphisms on the efficacy of proton pump inhibitor-based triple therapy for Helicobacter pylori eradication: A eta-analysis. Helicobacter 2008; 13, 532–541.
23. Padol, S., Yuan, Y., Thabane, M., Padol, I. T., Hunt, R. H.: The effect of CYP2C19 polymorphisms on H. pylori eradication rate in dual and triple first-line PPI therapies: a eta–analysis. Am. J. Gastroenterol. 2006; 101, 1467–1475.
24. Lee, J. H., Jung, H. Y., Choi, K. D., Song, H. J., Lee, G. H., Kim, J. H.: The influence of CYP2C19 polymorphism on eradication of Helicobacter pylori: A rospective randomized study of lansoprazole and rabeprazole. Gut. Liver. 2010; 4, 201–206.
25. Kurzawski, M., Gawrońska-Szklarz, B., Wrześniewska, J., Siuda, A., Starzyńska, T., Droździk, M.: Effect of CYP2C19*17 gene variant on Helicobacter pylori eradication in peptic ulcer patients. Eur. J. Clin. Pharmacol. 2006; 62, 877–880.
26. Gawrońska-Szklarz, B., Siuda, A., Kurzawski, M., Bielicki, D., Marlicz, W., Droździk, M.: Effects of CYP2C19, MDR1, and interleukin 1-B gene variants on the eradication rate of Helicobacter pylori infection by triple therapy with pantoprazole, amoxicillin, and metronidazole. Eur. J. Clin. Pharmacol. 2010; 66, 681–687.
27. Furuta, T., Shirai, N., Watanabe, F., Honda, S., Takeuchi, K., Iida, T., Sato, Y., Kajimura, M., Futami, H., Takayanagi, S., Yamada, M., Ohashi, K., Ishizaki, T., Hanai, H.: Effect of cytochrome P4502C19 genotypic differences on cure rates for gastroesophageal reflux disease by lansoprazole. Clin. Pharmacol. Ther. 2002; 72, 453–460.
28. Kawamura, M., Ohara, S., Koike, T., Iijima, K., Suzuki, J., Kayaba, S., Noguchi, K., Hamada, S., Noguchi, M., Shimosegawa, T.: he effects of lansoprazole on erosive reflux oesophagitis are influenced by CYP2C19 polymorphism. Aliment. Pharmacol. Ther. 2003; 17, 965–973.
29. Sagar, M., Janczewska, I., Ljungdahl, A.: Effect of CYP2C19 polymorphism on serum levels of vitamin B12 in patients on long-term omeprazole treatment. Aliment. Pharmacol. Ther. 1999; 13, 453–458.
30. Bellou, A., Aimone–Gastin, I., De Korwin, J. D., Bronowicki, J. P., Moneret–Vautri,n A., Nicolas, J. P., Bigard, M. A., Guéant J. L.: Cobalamin deficiency with megaloblastic anaemia in one patient under long-term omeprazole therapy. J. Intern. Med. 1996; 240, 161–164.
31. Sagar, M., Bertilsson, L., Stridsberg, M., Kjellins, A., MĆrdh, S., Seensalu, R.: Omeprazole nad CYP2C19 polymorphism: effects of long-term treatment on gastrin, pepsinogen I, and chromogranin A n patients with acid related disorders. Aliment. Pharmacol. Ther. 2000; 14, 1495–1502.
32. Steinhubl, S. R.: Genotyping, clopidogrel metabolism, and the search for the therapeutic window of thienopyridines. Circulation 2010; 121, 481–483.
33. Serebruany, V. L., Steinhubl, S. R., Berger, P. B., Malinin, A. I., Bhatt, D. L., Topol, E. J.: Variability in platelet responsiveness to clopidogrel among 544 individuals. J. Am. Coll. Cardiol. 2005; 45, 246–251.
34. Price, M. J., Endemann, S., Gollapudi, R. R., Valencia, R., Stinis, C. T., Levisay, J. P., Ernst, A., Sawhney, N. S., Schatz, R. A., Teirstein, P. S.: Prognostic significance of post-clopidogrel platelet reactivity assessed by a point-of-care assay on thrombotic events after drug-eluting stent implantation. Eur. Heart. J. 2008; 29, 992–1000.
35. Shuldiner, A. R., O‘Connell, J. R., Bliden, K. P., Gandhi, A., Ryan, K., Horenstein, R. B., Damcott, C. M., Pakyz, R., Tantry, U. S., Gibson, Q., Pollin, T. I., Post, W., Parsa, A., Mitchell, B. D., Faraday, N., Herzog, W., Gurbel, P. A.: Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 2009; 302, 849–857.
36. Sibbing, D., Taubert, D., Schömig, A., Kastrati, A., Von Beckerath, N.: Pharmacokinetics of clopidogrel in patients with stent thrombosis. J. Thromb. Haemost. 2008; 6, 1230–1232.
37. Hulot, J. S., Bura, A., Villard, E., Azizi, M., Remones, V., Goyenvalle, C., Aiach, M., Lechat, P., Gaussem, P.: Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood 2006; 108, 2244–2247.
38. Varenhorst, C., James, S., Erlinge, D., Brandt, J. T., Braun, O. O., Man, M., Siegbahn, A., Walker, J., Wallentin, L., Winters, K. J., Close, S. L.: Genetic variation of CYP2C19 affects both pharmacokinetic and pharmacodynamic responses to clopidogrel but not prasugrel in aspirin–treated patients with coronary artery disease. Eur. Heart. J. 2009; 30, 1744–1752.
39. Gladding, P., Webster, M., Zeng, I., Farrell, H., Stewart, J., Ruygrok, P., Ormiston, J., El-Jack, S., Armstrong, G., Kay, P., Scott, D., Gunes, A., Dahl, M. L.: The pharmacogenetics and pharmacodynamics of clopidogrel response: an analysis from the PRINC (Plavix Response in Coronary Intervention) trial. JACC Cardiovasc. Interv. 2008; 1, 620–627.
40. Frere, C., Cuisset, T., Morange, P. E., Quilici, J., Camoin-Jau, L., Saut, N., Faille, D., Lambert, M., Juhan-Vague, I., Bonnet, J. L., Alessi, M. C.: Effect of cytochrome p450 polymorphisms on platelet reactivity after treatment with clopidogrel in acute coronary syndrome. Am. J. Cardiol. 2008; 101, 1088–1093.
41. Sibbing, D., Stegherr, J., Latz, W., Koch, W., Mehilli, J., Dörrler, K., Morath, T., Schömig, A., Kastrati, A., von Beckerath, N.: Cytochrome P450 2C19 loss-of-function polymorphism and stent thrombosis following percutaneous coronary intervention. Eur. Heart. J. 2009; 30, 916–922.
42. Mega, J. L., Close, S. L., Wiviott, S. D., Shen, L., Hockett, R. D., Brandt, J. T., Walker, J. R., Antman, E. M., Macias, W., Braunwald, E., Sabatine, M. S.: Cytochrome p-450 polymorphisms and response to clopidogrel. N. Engl. J. Med. 2009; 360, 354–362.
43. Collet, J. P., Hulot, J. S., Pena, A., Villard, E., Esteve, J. B., Silvain, J., Payot, L., Brugier, D., Cayla, G., Beygui, F., Bensimon, G., Funck-Brentano, C., Montalescot, G.: Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet 2009; 373, 309–317.
44. Hulot, J. S., Collet, J. P., Silvain, J., Pena, A., Bellemain-Appaix, A., Barthélémy, O., Cayla, G., Beygui, F., Montalescot, G.: Cardiovascular risk in clopidogrel-treated patients according to cytochrome P450 2C19*2 loss-of-function allele or proton pump inhibitor coadministration: a systematic meta-analysis. J. Am. Coll. Cardiol. 2010; 56, 134–143.
45. Trenk, D., Hochholzer, W., Fromm, M. F., Chialda, L. E., Pahl, A., Valina, C. M., Stratz, C., Schmiebusch, P., Bestehorn, H. P., Büttner, H. J., Neumann, F. J.: Cytochrome P450 2C19 681G>A polymorphism and high on-clopidogrel platelet reactivity associated with adverse 1-year clinical outcome of elective percutaneous coronary intervention with drug-eluting or bare-metal stents. J. Am. Coll. Cardiol. 2008; 51, 1925–1934.
46. Sibbing, D., Koch, W., Gebhard, D., Schuster, T., Braun, S., Stegherr, J., Morath, T., Schömig, A., von Beckerath, N., Kastrati, A.: Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation. 2010; 121, 512–518.
47. Jiang, Z. P., Shu, Y., Chen, X. P., Huang, S. L., Zhu, R. H., Wang, W., He N., Zhou, H. H.: The role of CYP2C19 in amitriptyline N-demethylation in Chinese subjects. Eur J Clin Pharmacol 2002; 58, 109–113.
48. Steimer, W., Zöpf, K., von Amelunxen, S., Pfeiffer, H., Bachofer, J., Popp, J., Messner, B., Kissling, W., Leucht, S.: Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CYP2D6 extensive and intermediate metabolizers. Clin. Chem. 2004; 50, 1623–1633.
49. Madsen, H., Nielsen, K. K., BrŅsen, K.: Imipramine metabolism in relation to the sparteine and mephenytoin oxidation polymorphisms – a population study. Br. J. Clin. Pharmac. 1995; 39, 433–439.
50. Koyama, E., Tanaka, T., Chiba, K., Kawakatsu, S., Morinobu, S., Totsuka, S., Ishizaki, T.: Steady – state plasma concentrations of imipramine and desipramine in relation to mephenytoin 4’-Hydroxylation status in Japanese depressive patients. J. Clin. Psychopharmacol. 1996; 16, 286–293.
51. Schenk, P. W., van Vliet, M., Mathot, R. A., van Gelder, T., Vulto, A. G., van Fessem, M. A., Verploegh-Van Rij, S., Lindemans, J., Bruijn, J. A., van Schaik R. H.: The CYP2C19*17 genotype is associated with lower imipramine plasma concentrations in a large group of depressed patients. Pharmacogenomics. J. 2010; 10, 219–225.
52. Yokono, A., Morita, S., Someya, T., Hirokane, G., Okawa, M., Shimoda, K.: The effect of CYP2C19 and CYP2D6 genotypes on the metabolism of clomipramine in Japanese psychiatric patients. J. Clin. Psychopharmacol. 2001; 21, 549–555.
53. Sindrup, S. H., BrŅsen, K., Hansen, M. G., Aaes-JŅrgensen, T., OverŅ, K. F., Gra,m L. F.: Pharmacokinetics of citalopram in relation to the sparteine and the mephenytoin oxidation polymorphisms. Ther. Drug. Monit. 1993; 15, 11–17.
54. Yu, B. N., Chen, G. L., He, N., Ouyang, D. S., Chen, X. P., Liu, Z. Q., Zhou, H. H.: Pharmacokinetics of citalopram in relation to genetic polymorphism of CYP2C19. Drug. Metab. Dispos. 2003; 31, 1255–1259.
55. Herrlin, K., Yasui-Furukori, N., Tybring, G., Widén, J., Gustafsson, L. L., Bertilsson, L.: Metabolism of citalopram enantiomers in CYP2C19/CYP2D6 phenotyped panels of healthy Swedes. Br. J. Clin. Pharmacol. 2003; 56, 415–421.
56. Fudio, S., Borobia, A. M., PiĖana, E., Ramírez, E, Tabarés, B, Guerra, P, Carcas, A, Frías, J.: Evaluation of the influence of sex and CYP2C19 and CYP2D6 polymorphisms in the disposition of citalopram. Eur. J. Pharmacol. 2010; 626, 200–204.
57. Rudberg, I., Hendset, M., Uthus, L. H., Molden, E., Refsum, H.: Heterozygous mutation in CYP2C19 significantly increases the concentration/dose ratio of racemic citalopram and escitalopram (S-citalopram). Ther. Drug. Monit. 2006; 28, 102–105.
58. Ohlsson Rosenborg, S., Mwinyi, J., Andersson, M., Baldwin, R. M., Pedersen, R. S., Sim, S. C., Bertilsson, L., Ingelman-Sundberg, M., Eliasson, E.: Kinetics of omeprazole and escitalopram in relation to the CYP2C19*17 allele in healthy subjects. Eur. J. Clin. Pharmacol. 2008; 64, 1175–1179
59. Noehr-Jensen, L., Zwisler, S. T., Larsen, F., Sindrup, S. H., Damkier, P., Nielsen, F., Brosen, K.: Impact of CYP2C19 phenotypes on escitalopram metabolism and an evaluation of pupillometry as a serotonergic biomarker. Eur. J. Clin. Pharmacol. 2009; 65, 887–894
60. Bondolfi, G., Chautems, C., Rochat, B., Bertschy, G., Baumann, P.: Non-response to citalopram in depressive patients: pharmacokinetic and clinical consequences of a fluvoxamine augmentation. Psychopharmacology 1996; 128, 421–425
61. Peters, E. J., Slager, S. L., Kraft, J. B., Jenkins, G. D., Reinalda, M. S., McGrath, P. J., Hamilton, S. P.: Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PloS. One. 2008; 3, e1872
62. Xu, Z. H., Wang, W., Zhao, X. J., Huang, S. L., Zhu, B., He, N., Shu, Y., Liu, Z. Q., Zhou, H. H.: Evidence for involvement of polymorphic CYP2C19 and 2C9 in the N-demethylation of sertraline in human liver microsomes. Br. J. Clin. Pharmacol. 1999; 48, 416–423.
63. Wang, J. H., Liu, Z. Q., Wang, W., Chen, X. P., Shu, Y., He, N., Zhou, H. H.: Pharmacokinetics of sertraline in relation to genetic polymorphism of CYP2C19. Clin. Pharmacol. Ther. 2001; 70, 42–47.
64. Rudberg, I., Hermann, M., Refsum, H., Molden, E.: Serum concentrations of sertraline and N-desmethyl sertraline in relation to CYP2C19 genotype in psychiatric patients. Eur. J. Clin. Pharmacol. 2008; 64, 1181–1188.
65. Liu, Z. Q., Cheng, Z. N., Huang, S. L., Chen, X. P., Ou-Yang, D. S., Jiang, C. H., Zhou, H. H.: Effect of the CYP2C19 oxidation polymorphism on fluoxetine metabolism in Chinese healthy subjects. Br. J. Clin. Pharmacol. 2001; 52, 96–99.
66. Scordo, M. G., Spina, E., Dahl, M. L., Gatti, G., Perucca, E.: Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic. Clin. Pharmacol. Toxicol. 2005; 97, 296–301.
67. Bertilsson, L., Henthorn, T. K., Sanz, E., Tybring, G., Säwe, J., Villén, T.: Importance of genetic factors in the regulation of diazepam metabolism: relationship to S–mephenytoin, but not debrisoquin, hydroxylation phenotype. Clin. Pharmacol. Ther. 1989; 45, 348–355.
68. Shon, D. R., Kusaka, M., Ishizaki, T., Shin, S. G., Jang, I. J., Shin, J. G., Chiba, K.: Incidence of S-mephenytoin hydroxylation deficiency in a Korean population and the interphenotypic differences in diazepam pharmacokinetics. Clin. Pharmacol. Ther. 1992; 52, 160–169.
69. Qin, X. P., Xie, H. G., Wang, W., He, N., Huang, S. L., Xu, Z. H., Ou-Yang, D. S., Wang, Y. J., Zhou, H. H.: Effect of the gene dosage of CgammaP2C19 on diazepam metabolism in Chinese subjects. Clin. Pharmacol. Ther. 1999; 66, 642–646.
70. Inomata, S., Nagashima, A., Itagaki, F., Homma, M., Nishimura, M., Osaka, Y., Okuyama, K., Tanaka, E., Nakamura, T., Kohda, Y., Naito, S., Miyabe, M., Toyooka, H.: CYP2C19 genotype affects diazepam pharmacokinetics and emergence from general anesthesia. Clin. Pharmacol. Ther. 2005; 78, 647–655.
71. Giraud, C., Tran, A., Rey, E., Vincent, J., Tréluyer, J. M., Pons, G.: In vitro characterization of clobazam metabolism by recombinant cytochrome P450 enzymes: importance of CYP2C19. Drug. Metab. Dispos. 2004; 32, 1279–1286.
72. Contin, M., Sangiorgi, S., Riva, R., Parmeggiani, A., Albani, F., Baruzzi, A.: Evidence of polymorphic CYP2C19 involvement in the human metabolism of N-desmethylclobazam. Ther. Drug. Monit. 2002; 24, 737–741.
73. Kosaki, K., Tamura, K., Sato, R., Samejima, H., Tanigawara, Y., Takahashi, T.: A major influence of CYP2C19 genotype on the steady-state concentration of N-desmethylclobazam. Brain. Dev. 2004; 26, 530–534.
74. Seo, T., Nagata, R., Ishitsu, T., Murata, T., Takaishi, C., Hori, M., Nakagawa, K.: Impact of CYP2C19 polymorphisms on the efficacy of clobazam therapy. Pharmacogenomics. 2008; 9, 527–537.
75. Bajpai, M., Roskos, L. K., Shen, D. D., Levy, R. H.: Roles of cytochrome P4502C9 and cytochrome P4502C19 in the stereoselective metabolism of phenytoin to its major metabolite. Drug. Metab. Dispos. 1996; 24, 1401–1403.
76. Schellens, J. H., van der Wart, J. H., Breimer, D. D.: Relationship between mephenytoin oxidation polymorphism and phenytoin, methylphenytoin and phenobarbitone hydroxylation assessed in a phenotyped panel of healthy subjects. Br. J. Clin. Pharmacol. 1990; 29, 665–671.
77. Lee, S. Y., Lee, S. T., Kim, J. W.: Contributions of CYP2C9/CYP2C19 genotypes and drug interaction to the phenytoin treatment in the Korean epileptic patients in the clinical setting. J. Biochem. Mol. Biol. 2007; 40, 448–452.
78. Yukawa, E., Mamiya, K.: Effect of CYP2C19 genetic polymorphism on pharmacokinetics of phenytoin and phenobarbital in Japanese epileptic patients using Non–linear Mixed Effects Model approach. J. Clin. Pharm. Ther. 2006; 31, 275–282.
79. Bauer, K. S., Dixon, S. C., Figg, W. D.: Inhibition of angiogenesis by thalidomide requires metabolic activation, which is species-dependent. Biochem. Pharmacol. 1998; 55, 1827–1834.
80. Yaccoby, S., Johnson, C. L., Mahaffey, S. C., Wezeman, M. J., Barlogie, B., Epstei,n J.: Antimyeloma efficacy of thalidomide in the SCID-hu model. Blood. 2002; 100, 4162–4168.
81. Ando, Y., Fuse, E., Figg, W. D.: Thalidomide metabolism by the CYP2C subfamily. Clin. Cancer. Res. 2002; 8, 1964–1973.
82. Li, Y., Hou, J., Jiang, H., Wang, D., Fu, W., Yuan, Z., Chen, Y., Zhou, L.: Polymorphisms of CYP2C19 gene are associated with the efficacy of thalidomide based regimens in multiple myeloma. Haematologica 2007; 92, 1246–1249.
83. Griskevicius, L., Yasar, U., Sandberg, M., Hidestrand, M., Eliasson, E., Tybring, G., Hassan, M., Dahl, M. L.: Bioactivation of cyclophosphamide: the role of polymorphic CYP2C enzymes. Eur. J. Clin. Pharmacol. 2003; 59, 103–109.
84. Timm, R., Kaiser, R., Lötsch, J., Heider, U., Sezer, O., Weisz, K., Montemurro, M., Roots, I., Cascorbi, I.: Association of cyclophosphamide pharmacokinetics to polymorphic cytochrome P450 2C19. Pharmacogenomics. J. 2005; 5, 365–373.
85. Takada, K., Arefayene, M., Desta, Z., Yarboro, C. H., Boumpas, D. T., Balow, J. E., Flockhart, D. A., Illei, G. G.: Cytochrome P450 pharmacogenetics as a predictor of toxicity and clinical response to pulse cyclophosphamide in lupus nephritis. Arthritis. Rheum. 2004; 50, 2202–2210.
86. Singh, G., Saxena, N., Aggarwal, A., Misra, R.: Cytochrome P450 polymorphism as a predictor of ovarian toxicity to pulse cyclophosphamide in systemic lupus erythematosus. J. Rheumatol. 2007; 34, 731–733.
87. Ngamjanyaporn, P., Thakkinstian, A., Verasertniyom, O., Chatchaipun, P., Vanichapuntu, M., Nantiruj, K., Totemchokchyakarn, K., Attia, J., Janwityanujit, S.: Pharmacogenetics of cyclophosphamide and CYP2C19 polymorphism in Thai systemic lupus erythematosus. Rheumatol. Int. 2010 [Epub ahead of print]
88. Hyland, R., Jones, B. C., Smith, D. A.: Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug. Metab. Dispos. 2003; 31, 540–547.
89. Murayama, N., Imai, N., Nakane, T., Shimizu, M., Yamazaki, H.: Roles of CYP3A4 and CYP2C19 in methyl hydroxylated and N-oxidized metabolite formation from voriconazole, a new anti-fungal agent, in human liver microsomes. Biochem. Pharmacol. 2007; 73, 2020–2026.
90. Scholz, I., Oberwittler, H., Riedel, K. D., Burhenne, J., Weiss, J., Haefeli, W. E., Mikus, G.: Pharmacokinetics, metabolism and bioavailability of the triazole antifungal agent voriconazole in relation to CYP2C19 genotype. Br. J. Clin. Pharmacol. 2009; 68, 906–915.
91. Shi, H. Y., Yan, J., Zhu, W. H., Yang, G. P., Tan, Z. R., Wu, W. H., Zhou, G., Chen, X. P., Ouyang, D. S.: Effects of erythromycin on voriconazole pharmacokinetics and association with CYP2C19 polymorphism. Eur. J. Clin. Pharmacol. 2010; 66, 1131–1136.
92. Wang, G., Lei, H. P., Li, Z., Tan, Z. R., Guo, D., Fan, L., Chen, Y., Hu, D. L., Wang, D., Zhou, H. H.: The CYP2C19 ultra-rapid metabolizer genotype influences the pharmacokinetics of voriconazole in healthy male volunteers. Eur. J. Clin. Pharmacol. 2009; 65, 281–285.
93. Weiss, J., Ten Hoevel, M. M., Burhenne, J., Walter-Sack, I., Hoffmann, M. M., Rengelshausen, J., Haefeli, W. E., Mikus, G.: CYP2C19 genotype is a major factor contributing to the highly variable pharmacokinetics of voriconazole. J. Clin. Pharmacol. 2009; 49, 196–204
94. Matsumoto, K., Ikawa, K., Abematsu, K., Fukunaga, N., Nishida, K., Fukamizu, T., Shimodozono, Y., Morikawa, N., Takeda, Y., Yamada, K.: Correlation between voriconazole trough plasma concentration and hepatotoxicity in patients with different CYP2C19 genotypes. Int. J. Antimicrob. Agents. 2009; 34, 91–94.
95. Levin, M. D., den Hollander, J. G., van der Holt, B., Rijnders, B. .J, van Vliet, .M, Sonneveld, .P, van Schaik, R. H.: Hepatotoxicity of oral and intravenous voriconazole in relation to cytochrome P450 polymorphisms. J. Antimicrob. Chemother. 2007; 60, 1104–1107.
96. Hirani, V. N., Raucy, J. L., Lasker ,J. M.: Conversion of the HIV protease inhibitor nelfinavir to a bioactive metabolite by human liver CYP2C19. Drug. Metab. Dispos. 2004; 32, 1462–1467.
97. Burger, D. M., Schwietert, H. R., Colbers, E. P., Becker, M.: The effect of the CYP2C19*2 heterozygote genotype on the pharmacokinetics of nelfinavir. Br. J. Clin. Pharmacol. 2006; 62, 250–252.
98. Hirt, D., Mentré, F., Tran, A., Rey, E., Auleley, S., Salmon, D., Duval, X., Tréluyer, J. M.: Effect of CYP2C19 polymorphism on nelfinavir to M8 biotransformation in HIV patients. Br. J. Clin. Pharmacol. 2008; 65, 548–557.
99. Damle, B. D., Uderman, H., Biswas, P., Crownover, P., Lin, C., Glue, P.: Influence of CYP2C19 polymorphism on the pharmacokinetics of nelfinavir and its active metabolite. Br. J. Clin. Pharmacol. 2009; 68, 682–689.
100. Haas, D. W., Smeaton, L. M., Shafer, R. W., Robbins, G. K., Morse, G. D., Labbe, L., Wilkinson, G. R., Clifford, D. B., D‘Aquila, R. T., De Gruttola, V., Pollard, R. B., Merigan, T. C., Hirsch, M. S., George, A. L. Jr, Donahue, J. P., Kim, R. B.: Pharmacogenetics of long-term responses to antiretroviral regimens containing Efavirenz and/or Nelfinavir: an Adult Aids Clinical Trials Group Study. J. Infect. Dis. 2005; 192, 1931–1942.
101. Saitoh, A., Capparelli, E., Aweeka, F., Sarles, E., Singh, K. K., Kovacs, A., Burchett S. K., Wiznia, A., Nachman, S., Fenton, T., Spector, S. A.: CYP2C19 genetic variants affect nelfinavir pharmacokinetics and virologic response in HIV-1-infected children receiving highly active antiretroviral therapy. J. Acquir. Immune. Defic. Syndr. 2010; 54, 285–289.
102. P450 Drug Interaction Table. http://medicine.iupui.edu/ clinpharm/ddis/table.aspx (17. 5. 2011)
103. Suchopár, J., Buršík, J., Mach, R., Prokeš, M.: Kompendium lékových interakcí. 1. vyd. InfoPharm 2005.
104. Baxter, K., Davis, M., Driver, S. (eds.) Stockley’s drug interactions, 8th ed. Suffolk, Pharmaceuticals Press 2008.
Labels
Pharmacy Clinical pharmacologyArticle was published in
Czech and Slovak Pharmacy
2011 Issue 5
Most read in this issue
- Alzheimer’s disease: aspects of contemporary pharmacological treatment
-
Medicinal preparations in this country at the end of the 18th century
Part I – Introduction and liquid dosage forms - Clinical significance of cytochrome P450 genetic polymorphism – part III. cytochrome P450 2C19
- Viscosity and consistence measurements following Ph.B. 2009