Diet and its effect on prostate cancer, with a focus on plant-based diet
Authors:
D. Štruncová 1; R. Dymáčková 1,2
Authors‘ workplace:
LF MU, Brno
1; Klinika radiační onkologie, MOÚ Brno
2
Published in:
Klin Onkol 2020; 33(Suppl 1): 52-59
Category:
Review
doi:
https://doi.org/10.14735/amko2020S52
Overview
Background: According to the World Health Organization, prostate cancer is the world’s second most common cancer in men. International statistics show that prostate cancer incidence is highest in developed countries such as North America, Australia and New Zealand and Northern and Western Europe, and lowest in Asia. The large differences in the prostate cancer incidence between the Western world and Asian countries may be due to genetic differences, differences in prostate-specific antigen testing, availability of medical care and environmental factors. The changes in the incidence of prostate cancer observed in migrants who moved from the areas with lower incidence to the areas with higher incidence support the theory of diet’s impact on the risk of prostate cancer. Some studies show that vegetarian and vegan men also have lower incidence of prostate cancer than omnivorous men. The influence of diet and lifestyle in prevention of non-communicable diseases is becoming an important topic. The foods that are associated with a higher risk of developing prostate cancer include processed meat, red meat, animal fat, and in some studies milk and dairy products.
Purpose: Research in this area frequently confirms the influence of certain nutrients contained in a whole-food plant-based diet in preventing non-communicable diseases such as cardiovascular disease, diabetes, and some types of cancer. Whole-food plant-based diet contains less saturated fatty acids than omnivorous diet, and no cholesterol and is rich in nutrients with a protective effect, such as antioxidants, carotenoids, and fiber.
Keywords:
prostate – cancer – neoplasms – Diet – vegan
Sources
1. Craig WJ, Mangels AR. Position of the American Dietetic Association: vegetarian diets. J Am Diet Assoc 2009; 109 (7): 1266–1282. doi: 10.1016/j.jada.2009.05.027.
2. American Dietetic Association, Dietitians of Canada. Position of the American Dietetic Association and Dietitians of Canada: vegetarian diets. J Am Diet Assoc 2003; 103 (6): 748–765. doi: 10.1053/jada.2003.50142.
3. Společnost pro výživu. Veganská dieta. [online]. Dostupné z: https: //www.vyzivaspol.cz/veganska-dieta/.
4. World Health Organization. A healthy diet sustainably produced: information sheet. [online]. Available from: https: //www.who.int/nutrition/publications/nutrientrequirements/healhtydiet-information-sheet/en/.
5. Afshin A, Sur PJ, Fay KA et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019; 393 (10184): 1958–1972. doi: 10.1016/S0140-6736 (19) 30041-8.
6. Venkateswaran V, Klotz LH. Diet and prostate cancer: mechanisms of action and implications for chemoprevention. Nat Rev Urol 2010; 7 (8): 442–453. doi: 10.1038/nrurol.2010.102.
7. Patel VH. Nutrition and prostate cancer: an overview. Expert Rev Anticancer Ther 2014; 14 (11): 1295–1304. doi: 10.1586/14737140.2014.972946.
8. Denis L, Morton MS, Griffiths K. Diet and its preventive role in prostatic disease. Eur Urol 1999; 35 (5–6): 377–387. doi: 10.1159/000019912.
9. Craig WJ. Nutrition concerns and health effects of vegetarian diets. Nutr Clin Pract 2010; 25 (6): 613–620. doi: 10.1177/0884533610385707.
10. Sinha R, Cross AJ, Graubard BI et al. Meat intake and mortality: a prospective study of over half a million people. Arch Intern Med 2009; 169 (6): 562–571. doi: 10.1001/archinternmed.2009.6.
11. Pan A, Sun Q, Bernstein AM et al. Red meat consumption and mortality: results from 2 prospective cohort studies. Arch Intern Med 2012; 172 (7): 555–563. doi: 10.1001/archinternmed.2011.2287.
12. Alshahrani SM, Fraser GE, Sabaté J et al. Red and processed meat and mortality in a low meat intake population. Nutrients 2019; 11 (3): 622. doi: 10.3390/nu11030622.
13. Rawla P. Epidemiology of prostate cancer. World J Oncol 2019; 10 (2): 63–89. doi: 10.14740/wjon1191.
14. McCarty MF. Vegan proteins may reduce risk of cancer, obesity, and cardiovascular disease by promoting increased glucagon activity. Med Hypotheses 1999; 53 (6): 459–485. doi: 10.1054/mehy.1999.0784.
15. Renehan AG, Zwahlen M, Minder C et al. Insulin-like growth factor (IGF) -I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 2004; 363 (9418): 1346–1353. doi: 10.1016/S0140-6736 (04) 16044-3.
16. Rowlands MA, Gunnell D, Harris R et al. Circulating insulin-like growth factor peptides and prostate cancer risk: a systematic review and meta-analysis. Int J Cancer 2009; 124 (10): 2416–2429. doi: 10.1002/ijc.24202.
17. Faraj TA, McLaughlin CL, Erridge C. Host defenses against metabolic endotoxaemia and their impact on lipopolysaccharide detection. Int Rev Immunol 2017; 36 (3): 125–144. doi: 10.1080/08830185.2017.1280483.
18. Erridge C. The capacity of foodstuffs to induce innate immune activation of human monocytes in vitro is dependent on food content of stimulants of Toll-like receptors 2 and 4. Br J Nutr 2011; 105 (1): 15–23. doi: 10.1017/S0007114510003004.
19. Ghanim H, Abuaysheh S, Sia CL et al. Increase in plasma endotoxin concentrations and the expression of Toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: implications for insulin resistance. Diabetes Care 2009; 32 (12): 2281–2287. doi: 10.2337/dc09-0979.
20. Tantamango-Bartley Y, Knutsen SF, Knutsen R et al. Are strict vegetarians protected against prostate cancer? Am J Clin Nutr 2016; 103 (1): 153–160. doi: 10.3945/ajcn.114.106450.
21. Bardia A, Platz EA, Yegnasubramanian S et al. Anti-inflammatory drugs, antioxidants, and prostate cancer prevention. Curr Opin Pharmacol 2009; 9 (4): 419–426. doi: 10.1016/j.coph.2009.06.002.
22. Rizzo NS, Jaceldo-Siegl K, Sabate J et al. Nutrient profiles of vegetarian and nonvegetarian dietary patterns. J Acad Nutr Diet 2013; 113 (12): 1610–1619. doi: 10.1016/j.jand.2013.06.349.
23. Fraser GE. Associations between diet and cancer, ischemic heart disease, and all-cause mortality in non-Hispanic white California Seventh-day Adventists. Am J Clin Nutr 1999; 70 (Suppl 3): 532S–538S. doi: 10.1093/ajcn/70.3.532s.
24. Mills PK, Beeson WL, Phillips RL et al. Cohort study of diet, lifestyle, and prostate cancer in Adventist men. Cancer 1989; 64 (3): 598–604. doi: 10.1002/1097-0142.
25. Novotvary 2016 ČR. Cancer Incidence in the Czech Republic, 2016. Praha: Ústav zdravotnických informací a statistiky ČR 2016. [online]. Dostupné z: https: //www.uzis.cz/sites/default/files/knihovna/novotvary2016.pdf.
26. Forman D, Bray F, Brewster DH et al. Cancer incidence in five continents, Vol. X. IARC Scientific Publications, No. 164. [online]. Available from: https: //ci5.iarc.fr/CI5I-X/old/vol10/CI5vol10.pdf.
27. Wynder EL, Gori GB. Contribution of the environment to cancer incidence: an epidemiologic exercise. J Natl Cancer Inst 1977; 58 (4): 825–832. doi: 10.1093/jnci/58.4.825.
28. Ganmaa D, Li XM, Wang J et al. Incidence and mortality of testicular and prostatic cancers in relation to world dietary practices. Int J Cancer 2002; 98 (2): 262–267. doi: 10.1002/ijc.10185.
29. Rosato V, Edefonti V, Bravi F et al. Nutrient-based dietary patterns and prostate cancer risk: a case-control study from Italy. Cancer Causes Control 2014; 25 (4): 525–532. doi: 10.1007/s10552-014-0356-8.
30. Adlercreutz H, Mazur W, Bartels P et al. Phytoestrogens and prostate disease. J Nutr 2000; 130 (3): 658S–659S. doi: 10.1093/jn/130.3.658S.
31. Hsing AW, Tsao L, Devesa SS. International trends and patterns of prostate cancer incidence and mortality. Int J Cancer 2000; 85 (1): 60–67. doi: 10.1093/jn/130.3.658S.
32. Ganmaa D, Li XM, Qin LQ et al. The experience of Japan as a clue to the etiology of testicular and prostatic cancers. Med Hypotheses 2003; 60 (5): 724–730. doi: 10.1016/s0306-9877 (03) 00047-1.
33. Adlercreutz H. Western diet and Western diseases: some hormonal and biochemical mechanisms and associations. Scand J Clin Lab Invest Suppl 1990; 201: 3–23.
34. Lee MM, Gomez SL, Chang JS et al. Soy and isoflavone consumption in relation to prostate cancer risk in China. Cancer Epidemiol Biomarkers Prev 2003; 12 (7): 665–668.
35. Butler TL, Fraser GE, Beeson WL et al. Cohort profile: the Adventist Health Study-2 (AHS-2). Int J Epidemiol 2008; 37 (2): 260–265. doi: 10.1093/ije/dym165.
36. Fraser GE, Cosgrove CM, Mashchak AD et al. Lower rates of cancer and all-cause mortality in an Adventist cohort compared with a US Census population. Cancer 2020; 126 (5): 1102–1111. doi: 10.1002/cncr.32571.
37. Orlich MJ, Fraser GE. Vegetarian diets in the Adventist Health Study 2: a review of initial published findings. Am J Clin Nutr 2014; 100 (Suppl 1): 353S–358S. doi: 10.3945/ajcn.113.071233.
38. Wiley AS. Cow milk consumption, insulin-like growth factor-I, and human biology: a life history approach. Am J Hum Biol 2012; 24 (2): 130–138. doi: 10.1002/ajhb.22201.
39. Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J 2013; 12: 103. doi: 10.1186/1475-2891-12-103.
40. Vasconcelos A, Santos T, Ravasco P et al. Dairy products: is there an impact on promotion of prostate cancer? A review of the literature. Front Nutr 2019; 6: 62. doi: 10.3389/fnut.2019.00062.
41. Malekinejad H, Rezabakhsh A. Hormones in dairy foods and their impact on public health – a narrative review article. Iran J Public Health 2015; 44 (6): 742–758.
42. Sharpe RM, Skakkebaek NE. Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet 1993; 341 (8857): 1392–1395. doi: 10.1016/0140-6736 (93) 90953-e.
43. Ganmaa D, Wang PY, Qin LQ. et al. Is milk responsible for male reproductive disorders? Med Hypotheses 2001; 57 (4): 510–514. doi: 10.1054/mehy.2001.1380.
44. Hartmann S, Lacorn M, Steinhart H. Natural occurrence of steroid hormones in food. Food Chem 1998; 62 (1): 7–20. doi: 10.1016/S0308-8146 (97) 00150-7.
45. Qin LQ, He K, Xu JY. Milk consumption and circulating insulin-like growth factor-I level: a systematic literature review. Int J Food Sci Nutr 2009; 60 (Suppl 7): 330–340. doi: 10.1080/09637480903150114.
46. Harrison S, Lennon R, Holly J et al. Does milk intake promote prostate cancer initiation or progression via effects on insulin-like growth factors (IGFs) ? A systematic review and meta-analysis. Cancer Causes Control 2017; 28 (6): 497–528. doi: 10.1007/s10552-017-0883-1.
47. Cao Y, Nimptsch K, Shui IM et al. Prediagnostic plasma IGFBP-1, IGF-1 and risk of prostate cancer. Int J Cancer 2015; 136 (10): 2418–2426. doi: 10.1002/ijc.29295.
48. Chan JM, Stampfer MJ, Giovannucci E et al. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 1998; 279 (5350): 563–566. doi: 10.1126/science.279.5350.563.
49. Chan JM, Stampfer MJ, Ma J et al. Dairy products, calcium, and prostate cancer risk in the Physicians’ Health Study. Am J Clin Nutr 2001; 74 (4): 549–554. doi: 10.1093/ajcn/74.4.549.
50. Kesse E, Bertrais S, Astorg P et al. Dairy products, calcium and phosphorus intake, and the risk of prostate cancer: results of the French prospective SU.VI.MAX (Supplémentation en Vitamines et Minéraux Antioxydants) study. Br J Nutr 2006; 95 (3): 539–545. doi: 10.1079/bjn20051670.
51. Giovannucci E. Dietary influences of 1,25 (OH) 2 vitamin D in relation to prostate cancer: a hypothesis. Cancer Causes Control 1998; 9 (6): 567–582. doi: 10.1023/a: 1008835903714.
52. Aune D, Navarro Rosenblatt DA, Chan DS et al. Dairy products, calcium, and prostate cancer risk: a systematic review and meta-analysis of cohort studies. Am J Clin Nutr 2015; 101 (1): 87–117. doi: 10.3945/ajcn.113.067157.
53. Giovannucci E, Liu Y, Stampfer MJ et al. A prospective study of calcium intake and incident and fatal prostate cancer. Cancer Epidemiol Biomarkers Prev 2006; 15 (2): 203–210. doi: 10.1158/1055-9965.EPI-05-0586.
54. Park SY, Murphy SP, Wilkens LR et al. Calcium, vitamin D, and dairy product intake and prostate cancer risk: the Multiethnic Cohort Study. Am J Epidemiol 2007; 166 (11): 1259–1269. doi: 10.1093/aje/kwm269.
55. Křížová L, Dadáková K, Kašparovská J et al. Isoflavones. Molecules 2019; 24 (6): 1076. doi: 10.3390/molecules24061076.
56. Demark-Wahnefried W, Robertson CN, Walther PJ et al. Pilot study to explore effects of low-fat, flaxseed-supplemented diet on proliferation of benign prostatic epithelium and prostate-specific antigen. Urology 2004; 63 (5): 900–904. doi: 10.1016/j.urology.2003.12.010.
57. Cos P, De Bruyne T, Apers S et al. Phytoestrogens: recent developments. Planta Med 2003; 69 (7): 589–599. doi: 10.1055/s-2003-41122.
58. Thompson LU, Robb P, Serraino M et al. Mammalian lignan production from various foods. Nutr Cancer 1991; 16 (1): 43–52. doi: 10.1080/01635589109514139.
59. Demark-Wahnefried W, Polascik TJ, George SL et al. Flaxseed supplementation (not dietary fat restriction) reduces prostate cancer proliferation rates in men presurgery. Cancer Epidemiol Biomarkers Prev 2008; 17 (12): 3577–3587. doi: 10.1158/1055-9965.EPI-08-0008.
60. Parikh M, Maddaford TG, Austria JA et al. Dietary flaxseed as a strategy for improving human health. Nutrients 2019; 11 (5): 1171. doi: 10.3390/nu11051171.
61. Demark-Wahnefried W, Price DT, Polascik TJ et al. Pilot study of dietary fat restriction and flaxseed supplementation in men with prostate cancer before surgery: exploring the effects on hormonal levels, prostate-specific antigen, and histopathologic features. Urology 2001; 58 (1): 47–52. doi: 10.1016/s0090-4295 (01) 01014-7.
62. Dixon RA, Sumner LW. Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol 2003; 131 (3): 878–885. doi: 10.1104/pp.102.017319.
63. Miadoková E. Isoflavonoids – an overview of their biological activities and potential health benefits. Interdiscip Toxicol 2009; 2 (4): 211–218. doi: 10.2478/v10102-009-0021-3.
64. Li N, Wu X, Zhuang W et al. Soy and isoflavone consumption and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomized trials in humans. Mol Nutr Food Res 2020; 64 (4): e1900751. doi: 10.1002/mnfr.201900751.
65. Jenkins DJA, Blanco Mejia S, Chiavaroli L et al. Cumulative meta-analysis of the soy effect over time. J Am Heart Assoc 2019; 8 (13): e012458. doi: 10.1161/JAHA.119.012458.
66. Messina M. Soy and health update: evaluation of the clinical and epidemiologic literature. Nutrients 2016; 8 (12): E754. doi: 10.3390/nu8120754.
67. Aguilar F, Crebelli R, Di Domenico A et al. Risk assessment for peri- and post-menopausal women taking food supplements containing isolated isoflavones. EFSA Journal 2015; 13 (10): 4246. doi: 10.2903/j.efsa.2015.4246.
68. Omoni AO, Aluko RE. Soybean foods and their benefits: potential mechanisms of action. Nutr Rev 2005; 63 (8): 272–283. doi: 10.1111/j.1753-4887.2005.tb00141.x.
69. Setchell KD, Cassidy A. Dietary isoflavones: biological effects and relevance to human health. J Nutr 1999; 129 (3): 758S–767S. doi: 10.1093/jn/129.3.758S.
70. Yan L, Spitznagel EL. Soy consumption and prostate cancer risk in men: a revisit of a meta-analysis. Am J Clin Nutr 2009; 89 (4): 1155–1163. doi: 10.3945/ajcn.2008.27029.
71. van Die MD, Bone KM, Williams SG et al. Soy and soy isoflavones in prostate cancer: a systematic review and meta-analysis of randomized controlled trials. BJU Int 2014; 113 (5b): 119–130. doi: 10.1111/bju.12435.
72. Hussain M, Banerjee M, Sarkar FH et al. Soy isoflavones in the treatment of prostate cancer. Nutr Cancer 2003; 47 (2): 111–117. doi: 10.1207/s15327914nc4702_1.
73. Jacobsen BK, Knutsen SF, Fraser GE. Does high soy milk intake reduce prostate cancer incidence? The Adventist Health Study (United States). Cancer Causes Control 1998; 9 (6): 553–557. doi: 10.1023/a: 1008819500080.
74. Park SY, Murphy SP, Wilkens LR et al. Legume and isoflavone intake and prostate cancer risk: The Multiethnic Cohort Study. Int J Cancer 2008; 123 (4): 927–932. doi: 10.1002/ijc.23594.
75. Talvas J, Caris-Veyrat C, Guy L et al. Differential effects of lycopene consumed in tomato paste and lycopene in the form of a purified extract on target genes of cancer prostatic cells. Am J Clin Nutr 2010; 91 (6): 1716–1724. doi: 10.3945/ajcn.2009.28666.
76. Gann PH, Khachik F. Tomatoes or lycopene versus prostate cancer: is evolution anti-reductionist? J Natl Cancer Inst 2003; 95 (21): 1563–1565. doi: 10.1093/jnci/djg112.
77. Lowe GM, Booth LA, Young AJ et al. Lycopene and beta-carotene protect against oxidative damage in HT29 cells at low concentrations but rapidly lose this capacity at higher doses. Free Radic Res 1999; 30 (2): 141–151. doi: 10.1080/10715769900300151.
78. Hwang ES, Bowen PE. Effects of lycopene and tomato paste extracts on DNA and lipid oxidation in LNCaP human prostate cancer cells. Biofactors 2005; 23 (2): 97–105. doi: 10.1002/biof.5520230205.
79. Giovannucci E. A review of epidemiologic studies of tomatoes, lycopene, and prostate cancer. Exp Biol Med (Maywood) 2002; 227 (10): 852–859. doi: 10.1177/153537020222701003.
80. Key TJ, Appleby PN, Travis RC et al. Carotenoids, retinol, tocopherols, and prostate cancer risk: pooled analysis of 15 studies. Am J Clin Nutr 2015; 102 (5): 1142–1157. doi: 10.3945/ajcn.115.114306.
81. Giovannucci E. Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J Natl Cancer Inst 1999; 91 (4): 317–331. doi: 10.1093/jnci/91.4.317.
82. Giovannucci E, Ascherio A, Rimm EB et al. Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst 1995; 87 (23): 1767–1776. doi: 10.1093/jnci/87.23.1767.
83. Giovannucci E, Rimm EB, Liu Y et al. A prospective study of tomato products, lycopene, and prostate cancer risk. J Natl Cancer Inst 2002; 94 (5): 391–398. doi: 10.1093/jnci/94.5.391.
84. Jian L, Lee AH, Binns CW. Tea and lycopene protect against prostate cancer. Asia Pac J Clin Nutr 2007; 16 (Suppl 1): 453–457.
85. Gontero P, Marra G, Soria F et al. A randomized double-blind placebo controlled phase I-II study on clinical and molecular effects of dietary supplements in men with precancerous prostatic lesions. Chemoprevention or “chemopromotion”? Prostate 2015; 75 (11): 1177–1186. doi: 10.1002/pros.22999.
86. Ros E. Eat Nuts, Live Longer. J Am Coll Cardiol 2017; 70 (20): 2533–2535. doi: 10.1016/j.jacc.2017.09.1082.
87. Guasch-Ferré M, Liu X, Malik VS et al. Nut consumption and risk of cardiovascular disease. J Am Coll Cardiol 2017; 70 (20): 2519–2532. doi: 10.1016/j.jacc.2017.09.035.
88. Aune D, Keum N, Giovannucci E et al. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies. BMC Med 2016; 14 (1): 207. doi: 10.1186/s12916-016-0730-3.
89. Wang W, Yang M, Kenfield SA et al. Nut consumption and prostate cancer risk and mortality. Br J Cancer 2016; 115 (3): 371–374. doi: 10.1038/bjc.2016.181.
90. Abdull Razis AF, Noor NM. Cruciferous vegetables: dietary phytochemicals for cancer prevention. Asian Pac J Cancer Prev 2013; 14 (3): 1565–1570. doi: 10.7314/apjcp.2013.14.3.1565.
91. Kurilich AC, Tsau GJ, Brown A et al. Carotene, tocopherol, and ascorbate contents in subspecies of Brassica oleracea. J Agric Food Chem 1999; 47 (4): 1576–1581. doi: 10.1021/jf9810158.
92. Juge N, Mithen RF, Traka M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 2007; 64 (9): 1105–1127. doi: 10.1007/s00018-007-6484-5.
93. Mori N, Shimazu T, Charvat H et al. Cruciferous vegetable intake and mortality in middle-aged adults: a prospective cohort study. Clin Nutr 2019; 38 (2): 631–643. doi: 10.1016/j.clnu.2018.04.012.
94. Murillo G, Mehta RG. Cruciferous vegetables and cancer prevention. Nutr Cancer 2001; 41 (1–2): 17–28. doi: 10.1080/01635581.2001.9680607.
95. Traka M, Gasper AV, Melchini A et al. Broccoli consumption interacts with GSTM1 to perturb oncogenic signalling pathways in the prostate. PLoS One 2008; 3 (7): e2568. doi: 10.1371/journal.pone.0002568.
96. Kristal AR, Lampe JW. Brassica vegetables and prostate cancer risk: a review of the epidemiological evidence. Nutr Cancer 2002; 42 (1): 1–9. doi: 10.1207/S15327914NC421_1.
97. van Poppel G, Verhoeven DT, Verhagen H et al. Brassica vegetables and cancer prevention. Epidemiology and mechanisms. Adv Exp Med Biol 1999; 472: 159–168. doi: 10.1007/978-1-4757-3230-6_14.
98. Zhang X, Shu XO, Xiang YB et al. Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. Am J Clin Nutr 2011; 94 (1): 240–246. doi: 10.3945/ajcn.110.009340.
99. Traka MH, Melchini A, Coode-Bate J et al. Transcriptional changes in prostate of men on active surveillance after a 12-mo glucoraphanin-rich broccoli intervention-results from the Effect of Sulforaphane on prostate CAncer PrEvention (ESCAPE) randomized controlled trial. Am J Clin Nutr 2019; 109 (4): 1133–1144. doi: 10.1093/ajcn/nqz012.
100. Liu B, Mao Q, Cao M et al. Cruciferous vegetables intake and risk of prostate cancer: a meta-analysis. Int J Urol 2012; 19 (2): 134–141. doi: 10.1111/j.1442-2042.2011.02906.x.
101. Kolonel LN, Hankin JH, Whittemore AS et al. Vegetables, fruits, legumes and prostate cancer: a multiethnic case-control study. Cancer Epidemiol Biomarkers Prev 2000; 9 (8): 795–804.
102. Ornish D, Weidner G, Fair WR et al. Intensive lifestyle changes may affect the progression of prostate cancer. J Urol 2005; 174 (3): 1065–1069. doi: 10.1097/01.ju.0000169487.49018.73.
103. Dusek L, Muzik J, Maluskova D et al. Cancer incidence and mortality in the Czech Republic. Klin Onkol 2014; 27 (6): 406–423. doi: 10.14735/amko2014406.
104. Center MM, Jemal A, Lortet-Tieulent J et al. International variation in prostate cancer incidence and mortality rates. Eur Urol 2012; 61 (6): 1079–1092. doi: 10.1016/j.eururo.2012.02.054.
105. International Agency for Research on Cancer. Global Cancer Observatory. [online]. Available from: http: //gco.iarc.fr/.
106. Campbell TC, Parpia B, Chen J. Diet, lifestyle, and the etiology of coronary artery disease: the Cornell China study. Am J Cardiol 1998; 82 (10B): 18–21. doi: 10.1016/s0002-9149 (98) 00718-8.
107. Saika K, Machii R. Incidence rate for prostate cancer in Japanese in Japan and in the United States from the cancer incidence in five continents. Jpn J Clin Oncol 2016; 46 (11): 1074. doi: 10.1093/jjco/hyw158.
108. van Die MD, Bone KM, Williams SG et al. Soy and soy isoflavones in prostate cancer: a systematic review and meta-analysis of randomized controlled trials. BJU Int 2014; 113 (5b): 119–130. doi: 10.1111/bju.12435.
109. Shimizu H, Ross RK, Bernstein L et al. Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles County. Br J Cancer 1991; 63 (6): 963–966. doi: 10.1038/bjc.1991.210.
110. Adlercreutz H. Epidemiology of phytoestrogens. Baillieres Clin Endocrinol Metab 1998; 12 (4): 605–623. doi: 10.1016/s0950-351x (98) 80007-4.
111. Colli JL, Colli A. International comparisons of prostate cancer mortality rates with dietary practices and sunlight levels. Urol Oncol 2006; 24 (3): 184–194. doi: 10.1016/j.urolonc.2005.05.023.
112. Allen NE, Key TJ, Appleby PN et al. Animal foods, protein, calcium and prostate cancer risk: the European Prospective Investigation into Cancer and Nutrition. Br J Cancer 2008; 98 (9): 1574–1581. doi: 10.1038/sj.bjc.6604331.
113. Jakulj F, Zernicke K, Bacon SL et al. A high-fat meal increases cardiovascular reactivity to psychological stress in healthy young adults. J Nutr 2007; 137 (4): 935–939. doi: 10.1093/jn/137.4.935.
114. Dewell A, Weidner G, Sumner MD et al. A very-low-fat vegan diet increases intake of protective dietary factors and decreases intake of pathogenic dietary factors. J Am Diet Assoc 2008; 108 (2): 347–356. doi: 10.1016/j.jada.2007.10.044.
115. Guasch-Ferré M, Bulló M, Martínez-González MÁ et al. Frequency of nut consumption and mortality risk in the PREDIMED nutrition intervention trial. BMC Med 2013; 11: 164. doi: 10.1186/1741-7015-11-164.
116. Ros E. Health benefits of nut consumption. Nutrients 2010; 2 (7): 652–682. doi: 10.3390/nu2070683.
117. Trinidad TP, Mallillin AC, Loyola AS et al. The potential health benefits of legumes as a good source of dietary fibre. Br J Nutr 2010; 103 (4): 569–574. doi: 10.1017/S0007114509992157.
118. Sánchez-Chino X, Jiménez-Martínez C, Dávila--Ortiz G et al. Nutrient and nonnutrient components of legumes, and its chemopreventive activity: a review. Nutr Cancer 2015; 67 (3): 401–410. doi: 10.1080/01635581.2015.1004729.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2020 Issue Suppl 1
Most read in this issue
- Secondary tumors and radiotherapy
- Nutrition during radiotherapy of cancer patients
- Diet and its effect on prostate cancer, with a focus on plant-based diet
- Hypofractionated radiotherapy for prostate cancer