Radiotherapy of patients with implantable electronical devices
Authors:
L. Bobek 1; P. Burkoň 1,2; M. Vrzal 1; A. Odložilíková 1; V. Peksa 1; P. Šlampa 1,2
Authors‘ workplace:
Klinika radiační onkologie MOÚ Brno
1; Klinika radiační onkologie LF MU Brno
2
Published in:
Klin Onkol 2020; 33(Suppl 1): 6-14
Category:
Review
doi:
https://doi.org/10.14735/amko2020S6
Overview
Background: Patients with implanted cardiovascular implantable electronical devices (CIED) undergoing radiotherapy are at a significant risk of malfunction of the device caused by external beam radiotherapy. Device failures are reported in literature ever since first linear accelerators have been in operation in 1960s. The principles of safe irradiation of these patients are developing with a deeper cause analysis of failures. In Europe, the most cited are Dutch Hurkmans’ or DEGRO/DGK guidelines. The American Association of Physicists in Medicine (AAPM) Task Group 203’s Report released in late 2019 is different in several key approaches, especially in the question of maximal accepted dose to the device and the need of ECG monitoring during the treatment. In the light of current knowledge, the AAPM also reduces indications for surgical CIED’s replacement if the recommendations can’t be reached. Purpose: It is necessary for every radiotherapy department to adopt internal directive for CIEDs carrying patient’s treatment. This report brings a complex overview of causes and mechanisms of CIED’s malfunctions and, considering both different patient’s managements, it offers assets for regional guidelines in the Czech Republic.
Keywords:
radiotherapy – pacemaker – implantable cardioverter-defibrillator – CIED
Sources
1. Marbach JR, Sontag MR, Van Dyk J et al. Management of radiation oncology patients with implanted cardiac pacemakers: Report of AAPM Task Group No. 34. Med Phys. 1994; 21 (1): 85–90. doi: 10.1118/1.597259.
2. Miften M, Mihailidis D, Kry SF et al. Management of radiotherapy patients with implanted cardiac pacemakers and defibrillators: A Report of the AAPM TG-203. Med Phys 2019; 46 (12): e757–e788. doi: 10.1002/mp.13838.
3. Veselka J, Durdill V, Riedlbauchová L. Příručka pro ozařování pacientů s kardiostimulátorem nebo implantovaným kardioverter-defibrilátorem. 2004.
4. Last A. Radiotherapy in patients with cardiac pacemakers. Br J Radiol 1998; 71 (841): 4–10. doi: 10.1259/bjr.71.841. 9534692.
5. Niehaus M, Tebbenjohanns J. Electromagnetic interference in patients with implanted pacemakers or cardioverter-defibrillators. Heart 2001; 86 (3): 246–248. doi: 10.1136/heart.86.3.246.
6. Gelblum DY, Amols H. Implanted cardiac defibrillator care in radiation oncology patient population. Int J Radiat Oncol 2009; 73 (5): 1525–1531. doi: 10.1016/j.ijrobp.2008.06.1903.
7. Raitt MH, Stelzer KJ, Laramore GE et al. Runaway pacemaker during high-energy neutron radiation therapy. Chest 1994; 106 (3): 955–957. doi: 10.1378/chest.106.3.955.
8. Elders J, Kunze-Busch M, Jan Smeenk R et al. High incidence of implantable cardioverter defibrillator malfunctions during radiation therapy: Neutrons as a probable cause of soft errors. Europace 2013; 15 (1): 60–65. doi: 10.1093/europace/eus197.
9. Gomez DR, Poenisch F, Pinnix CC et al. Malfunctions of implantable cardiac devices in patients receiving proton beam therapy: incidence and predictors. Int J Radiat Oncol 2013; 87 (3): 570–575. doi: 10.1016/j.ijrobp.2013.07.010.
10. Bradley PD, Normand E. Single event upsets in implantable cardioverter defibrillators. IEEE Trans Nucl Sci 1998; 45 (6): 2929–2940. doi: 10.1109/23.736549.
11. Brenner DJ, Hall EJ. Secondary neutrons in clinical proton radiotherapy: A charged issue. Radiother Oncol 2008; 86 (2): 165–170. doi: 10.1016/j.radonc.2007.12.003.
12. Hurkmans CW, Scheepers E, Springorum BGF et al. Influence of radiotherapy on the latest generation of implantable cardioverter-defibrillators. Int J Radiat Oncol 2005; 63 (1): 282–289. doi: 10.1016/j.ijrobp.2005.04.047.
13. Sundar S, Symonds RP, Deehan C. Radiotherapy to patients with artificial cardiac pacemakers. Cancer Treat Rev 2005; 31 (6): 474–486. doi: 10.1016/j.ctrv.2005.05.002.
14. Mouton J, Haug R, Bridier A et al. Influence of high-energy photon beam irradiation on pacemaker operation. Phys Med Biol 2002; 47 (16): 304. doi: 10.1088/0031-9155/47/16/304.
15. Brooks C, Mutter M. Pacemaker failure associated with therapeutic radiation. Am J Emerg Med 1988; 6 (6): 591–593. doi: 10.1016/0735-6757 (88) 90097-6.
16. Hudson F, Coulshed D, D’Souza E et al. Effect of radiation therapy on the latest generation of pacemakers and implantable cardioverter defibrillators: A systematic review. J Med Imaging Radiat Oncol 2010; 54 (1): 53–61. doi: 10.1111/j.1754-9485.2010.02138.x.
17. Mollerus M, Naslund L, Lipinski M et al. Radiation tolerance of contemporary implantable cardioverter-defibrillators. J Interv Card Electrophysiol 2014; 39 (2): 171–175. doi: 10.1007/s10840-013-9861-z.
18. Hurkmans CW, Scheepers E, Springorum BGF et al. Influence of radiotherapy on the latest generation of pacemakers. Radiother Oncol 2005; 76 (1): 93–98. doi: 10.1016/j.ijrobp.2005.04.047.
19. Uiterwaal GJ, Springorum BGF, Scheepers E et al. Interference detection in implantable defibrillators induced by therapeutic radiation therapy. Netherlands Hear J 2006; 14 (10): 330–334.
20. Kobayashi H, Shiraishi K, Tsuchiya H et al. Soft errors in SRAM devices induced by high energy neutrons, thermal neutrons and alpha particles. In: Digest International Electron Devices Meeting, IEEE 2002; 337–340. doi: 10.1109/IEDM.2002.1175847.
21. Bagur R, Chamula M, Brouillard É et al. Radiotherapy-induced cardiac implantable electronic device dysfunction in patients with cancer. Am J Cardiol 2017; 119 (2): 284–289. doi: 10.1016/j.amjcard.2016.09.036.
22. Wilkinson JD, Bounds C, Brown T et al. Cancer-radiotherapy equipment as a cause of soft errors in electronic equipment. IEEE Trans Device Mater Reliab 2005; 5 (3): 449–451. doi: 10.1109/TDMR.2005.858342.
23. Gauter-Fleckenstein B, Barthel C, Büttner S et al. Effectivity and applicability of the German DEGRO/DGK-guideline for radiotherapy in CIED-bearing patients. Radiother Oncol 2020; In print. doi: 10.1016/j.radonc.2020.01.006.
24. Grant JD, Jensen GL, Tang C et al. Radiotherapy-induced malfunction in contemporary cardiovascular implantable electronic devices. JAMA Oncol 2015; 1 (5): 624. doi: 10.1001/jamaoncol.2015.1787.
25. Solan AN, Solan MJ, Bednarz G et al. Treatment of patients with cardiac pacemakers and implantable cardioverter-defibrillators during radiotherapy. Int J Radiat Oncol 2004; 59 (3): 897–904. doi: 10.1016/j.ijrobp.2004.02.038.
26. Indik JH, Gimbel JR, Abe H et al. 2017 HRS expert consensus statement on magnetic resonance imaging and radiation exposure in patients with cardiovascular implantable electronic devices. Hear Rhythm 2017; 14 (7): e97–153. doi: 10.1016/j.hrthm.2017.04.025.
27. Tondato F, Ng DW, Srivathsan K et al. Radiotherapy-induced pacemaker and implantable cardioverter defibrillator malfunction. Expert Rev Med Devices 2009; 6 (3): 243–249. doi: 10.1586/erd.09.7.
28. Hurkmans CW, Knegjens JL, Oei BS et al. Management of radiation oncology patients with a pacemaker or ICD: A new comprehensive practical guideline in The Netherlands. Radiat Oncol 2012; 7 (1): 198. doi: 10.1186/1748-717X-7-198.
29. Chavez MI. Monitoring patients with implanted cardiac rhythm devices receiving radiation therapy. Oncol Nurs Forum 2009; 36 (6): 629–632. doi: 10.1186/1748-717X-7-198.
30. Lelakowski J, Majewski J, Bednarek J et al. Pacemaker dependency after pacemaker implantation. Cardiol J 2007; 14 (1): 83–86.
31. Korantzopoulos P, Letsas KP, Grekas G et al. Pacemaker dependency after implantation of electrophysiological devices. Europace 2009; 11 (9): 1151–1155. doi: 10.1093/europace/eup195.
32. Gauter-Fleckenstein B, Israel CW, Dorenkamp M et al.DEGRO/DGK guideline for radiotherapy in patients with cardiac implantable electronic devices: Leitlinie der DEGRO/DGK zur Strahlentherapie bei Patienten mit kardialen implantierten elektronischen Geräten. Strahlentherapie und Onkol 2015; 191 (5): 393–404. doi: 10.1007/s00066-015-0817-3.
33. McCollough CH, Zhang J, Primak AN et al. Effects of CT irradiation on implantable cardiac rhythm management devices. Radiology 2007; 243 (3): 766–774. doi: 10.1148/radiol.2433060993.
34. Yamaji S, Imai S, Saito F et al. Does high-power computed tomography scanning equipment affect the operation of pacemakers? Circ J 2006; 70 (2): 190–197. doi: 10.1253/circj.70.190.
35. Hussein AA, Abutaleb A, Jeudy J et al. Safety of computed tomography in patients with cardiac rhythm management devices. J Am Coll Cardiol 2014; 63 (17): 1769–1775. doi: 10.1016/j.jacc.2013.12.040.
36. Reft CS, Runkel-Muller R, Myrianthopoulos L. In vivo and phantom measurements of the secondary photon and neutron doses for prostate patients undergoing 18 MV IMRT. Med Phys 2006; 33 (10): 3734–3742. doi: 10.1118/1.2349699.
37. Kry SF, Titt U, Pönisch F et al. A Monte Carlo model for calculating out-of-field dose from a Varian 6MV beam. Med Phys 2006; 33 (11): 4405–4413. doi: 10.1118/1.2360013.
38. Kry SF, Salehpour M, Titt U et al. Monte Carlo study shows no significant difference in second cancer risk between 6- and 18-MV intensity-modulated radiation therapy. Radiother Oncol 2009; 91 (1): 132–137. doi: 10.1016/j.radonc.2008.11.020.
39. Howell RM, Hertel NE, Wang Z et al. Calculation of effective dose from measurements of secondary neutron spectra and scattered photon dose from dynamic MLC IMRT for 6 MV, 15 MV, and 18 MV beam energies. Med Phys 2006; 33 (2): 360–368. doi: 10.1118/1.2140119.
40. Clasie B, Wroe A, Kooy H et al. Assessment of out-of-field absorbed dose and equivalent dose in proton fields. Med Phys 2010; 37 (1): 311–321. doi: 10.1118/1.3271390.
41. Oshiro Y, Sugahara S, Noma M et al. Proton beam therapy interference with implanted cardiac pacemakers. Int J Radiat Oncol Biol Phys 2008; 72 (3): 723–727. doi: 10.1016/j.ijrobp.2008.01.062.
42. Wadasadawala T, Pandey A, Agarwal JP et al. Radiation therapy with implanted cardiac pacemaker devices: a clinical and dosimetric analysis of patients and proposed precautions. Clin Oncol 2011; 23 (2): 79–85. doi: 10.1016/j.clon.2010.08.031.
43. Keall PJ, Starkschall G, Shukla H et al. Acquiring 4D thoracic CT scans using a multislice helical method. Phys Med Biol 2004; 49 (10): 2053–2067. doi: 10.1088/0031-9155/49/10/015.
44. Starkschall G, St George FJ, Zellmer DL. Surface dose for megavoltage photon beams outside the treatment field. Medical Physics 1983; 10 (6): 906. doi: 10.1118/1.595362.
45. Yeboah C, Karotki A, Hunt D et al. Quantification and reduction of peripheral dose from leakage radiation on Siemens primus accelerators in electron therapy mode. J Appl Clin Med Phys 2010; 11 (3): 3105. doi: 10.1120/jacmp.v11i3.3105.
46. Kry SF, Bednarz B, Howell RM et al. AAPM TG 158: Measurement and calculation of doses outside the treated volume from external-beam radiation therapy. Med Phys 2017; 44 (10): e391–e429. doi: 10.1002/mp.12462.
47. Kry SF, Vassiliev ON, Mohan R. Out-of-field photon dose following removal of the flattening filter from a medical accelerator. Phys Med Biol 2010; 55 (8): 2155–2166. doi: 10.1088/0031-9155/55/8/003.
48. Kragl G, Baier F, Lutz S et al. Flattening filter free beams in SBRT and IMRT: Dosimetric assessment of peripheral doses. Z Med Phys 2011; 21 (2): 91–101. doi: 10.1016/j.zemedi.2010.07.003.
49. Gossman MS, Graves-Calhoun AR, Wilkinson JD. Establishing radiation therapy treatment planning effects involving implantable pacemakers and implantable cardioverter-defibrillators. J Appl Clin Med Phys 2010; 11 (3): 3115. doi: 10.1120/jacmp.v11i1.3115.
50. Riley B, Garcia J, Guerrero T. The utilization of a 3-dimensional noncoplanar treatment plan to avoid pacemaker complications. Med Dosim 2004; 29 (2): 92–96. doi: 10.1016/j.meddos.2004.03.013.
51. Munshi A, Wadasadawala T, Sharma PK et al. Radiation therapy planning of a breast cancer patient with in situ pacemaker-challenges and lessons. Acta Oncol (Madr) 2008; 47 (2): 256–260. doi: 10.1080/02841860701678779.
52. de Bie MK, van Rees JB, Thijssen J et al. Cardiac device infections are associated with a significant mortality risk. Hear Rhythm 2012; 9 (4): 494–498. doi: 10.1016/j.hrthm.2011.10.034.
53. Mesoloras G, Sandison GA, Stewart RD et al. Neutron scattered dose equivalent to a fetus from proton radiotherapy of the mother. Med Phys 2006; 33 (7): 2479–2490. doi: 10.1118/1.2207147.
54. Hurkmans C, Schmeets I, Uiterwaal H. In regard to Solan et al. Treatment of patients with cardiac pacemakers and implantable cardioverter-defibrillators during radiotherapy (Int J Radiat Oncol Biol Phys 2004; 59: 897–904). Int J Radiat Oncol 2004; 60 (5): 1662–1663. doi: 10.1016/j.ijrobp.2004.08.012.
55. Klenzner T, Knapp F, Rőhner F et al. Influence of ionizing radiation on nucleus 24 cochlear implants. Otol Neurotol 2005; 26 (4): 661–667. doi: 10.1097/01.mao.0000178134.96977.f5.
56. Klenzner T, Lutterbach J, Aschendorff A et al. The effect of large single radiation doses on cochlear implant function: Implications for radiosurgery. Eur Arch Oto-Rhino-Laryngology 2004; 261 (5): 251–255. doi: 10.1007/s00405-003-0670-3.
57. Ralston A, Stevens G, Mahomudally E et al. Cochlear implants: Response to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1999; 44 (1): 227–231. doi: 10.1016/S0360-3016 (98) 00532-X.
58. Baumann R, Lesinski-Schiedat A, Goldring JE et al. The influence of ionizing radiation on the CLARION 1.2 Cochlear implant during radiation therapy. Am J Otol 1999; 20 (1): 50–52.
59. Lauro C, Miften M, Albano E et al. Intact functioning of intrathecal pain pump receiving radiation therapy. [online]. Available from: https: //www.hilarispublisher.com/open-access/intact-functioning-of-intrathecal-pain-pump-receiving-radiation-therapy-2165-7920.1000157.pdf.
60. Wu H, Wang D. Radiation-induced alarm and failure of an implanted programmable intrathecal pump. Clin J Pain 2007; 23 (9): 826–828. doi: 10.1097/AJP.0b013e3181534990.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2020 Issue Suppl 1
Most read in this issue
- Secondary tumors and radiotherapy
- Nutrition during radiotherapy of cancer patients
- Diet and its effect on prostate cancer, with a focus on plant-based diet
- Hypofractionated radiotherapy for prostate cancer