Techniques to Study Transendothelial Migration In Vitro
Authors:
L. Knopfová 1; P. Bouchal 2; J. Šmarda 1
Authors‘ workplace:
Ústav experimentální biologie, Přírodovědecká fakulta MU, Brno
1; Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno
2
Published in:
Klin Onkol 2014; 27(Supplementum): 28-33
Overview
The most dangerous aspect of cancer is the metastatic spread to other parts of the body. Cancer cells frequently use circulation to spread to secondary locations. By entering the bloodstream (in a process called intravasation) and by crossing the vessel walls at the metastatic sites (extravasation) tumor cells disseminate to distal organs and eventually form life‑ threatening metastases. Crossing the vessel walls (transendothelial migration) is a vital step of metastatic cascade and the elucidation of mechanisms involved in transendothelial migration might inspire new strategies of targeted anti‑metastatic therapy. There are several methods to study transendothelial migration in living models (in vivo). Although they offer complex physiological microenvironment, they are expensive and technically demanding, therefore not widely used. As an alternative, sophisticated techniques to investigate transendothelial migration in vitro have been developed. They are generally more available and feasible, but there is still considerable variability in the difficulty of performance, the requirements for specialized devices, accuracy of in vivo simulation and relevance for oncological applications. The classification, various modifications, pros and cons of in vitro techniques for studying transendothelial migration are summarized in this review.
Key words:
transendothelial migration – extravasation – endothelial cells – metastasis – transwell system
This work was supported by the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101).
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Submitted:
3. 2. 2014
Accepted:
27. 3. 2014
Sources
1. Reymond N, d‘Água BB, Ridley AJ. Crossing the endothelial barrier during metastasis. Nat Rev Cancer 2013; 13(12): 858– 870. doi: 10.1038/ nrc3628.
2. Stoletov K, Kato H, Zardouzian E et al. Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 2010; 123(Pt 13): 2332– 2341. doi: 10.1242/ jcs.069443.
3. Wyckoff JB, Jones JG, Condeelis JS et al. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res 2000; 60(9): 2504– 2511.
4. Gligorijevic B, Wyckoff J, Yamaguchi H et al. N‑ WASP‑ mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. J Cell Sci 2012; 125(Pt 3): 724– 734. doi: 10.1242/ jcs.092726.
5. Wolf MJ, Hoos A, Bauer J et al. Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2- Stat5 and p38MAPK pathway. Cancer Cell 2012; 22(1): 91– 105. doi: 10.1016/ j.ccr.2012.05.023.
6. Zhang Q, Liu T, Qin J. A microfluidic‑based device for study of transendothelial invasion of tumor aggregates in realtime. Lab Chip 2012; 12(16): 2837– 2842. doi: 10.1039/ c2lc00030j.
7. Jeon JS, Zervantonakis IK, Chung S et al. In vitro model of tumor cell extravasation. PLoS One 2013; 8(2): e56910. doi: 10.1371/ journal.pone.0056910.
8. Bapu D, Khadim M, Brooks SA. Rocking adhesion assay system to study adhesion and transendothelial migration of cancer cells. Methods Mol Biol 2014; 1070: 37– 45. doi: 10.1007/ 978- 1- 4614-8244- 4_3.
9. Zen K, Liu DQ, Guo YL et al. CD44v4 is a major E‑ selectin ligand that mediates breast cancer cell transendothelial migration. PLoS One 2008; 3(3): e1826. doi: 10.1371/ journal.pone.0001826.
10. Peyri N, Berard M, Fauvel‑ Lafeve F et al. Breast tumor cells transendothelial migration induces endothelial cell anoikis through extracellular matrix degradation. Anticancer Res 2009; 29(6): 2347– 2355.
11. Malin D, Strekalova E, Petrovic V et al. αB‑ crystallin: a novel regulator of breast cancer metastasis to the brain. Clin Cancer Res 2014; 20(1): 56– 67. doi: 10.1158/ 1078- 0432.CCR‑ 13- 1255.
12. Ma C, Rong Y, Radiloff DR et al. Extracellular matrix protein betaig‑ h3/ TGFBI promotes metastasis of colon cancer by enhancing cell extravasation. Genes Dev 2008; 22(3): 308– 321. doi: 10.1101/ gad.1632008.
13. Haddad O, Chotard‑ Ghodsnia R, Verdier C et al. Tumor cell/ endothelial cell tight contact upregulates endothelial adhesion molecule expression mediated by NFkappaB: differential role of the shear stress. Exp Cell Res 2010; 316(4): 615– 626. doi: 10.1016/ j.yexcr.2009.11.015.
14. Li J, Guillebon AD, Hsu JW et al. Human fucosyltransferase 6 enables prostate cancer metastasis to bone. Br J Cancer 2013; 109(12): 3014– 3022. doi: 10.1038/ bjc.2013.690.
15. Voura EB, English JL, Yu HY et al. Proteolysis during tumor cell extravasation in vitro: metalloproteinase involvement across tumor cell types. PLoS One 2013; 8(10): e78413. doi: 10.1371/ journal.pone.0078413.
16. Evani SJ, Prabhu RG, Gnanaruban V et al. Monocytes mediate metastatic breast tumor cell adhesion to endothelium under flow. FASEB J 2013; 27(8): 3017– 3029. doi: 10.1096/ fj.12- 224824.
17. Kim C, Lee HS, Lee D et al. Epithin/ PRSS14 proteolytically regulates angiopoietin receptor Tie2 during transendothelial migration. Blood 2011; 117(4): 1415– 1424. doi: 10.1182/ blood‑ 2010- 03- 275289.
18. Ma C, Wang XF. In vitro assays for the extracellular matrix protein‑regulated extravasation process. CSH Protoc 2008. doi: 10.1101/ pdb.prot5034.
19. Fazakas C, Wilhelm I, Nagyoszi P et al. Transmigration of melanoma cells through the blood‑ brain barrier: role of endothelial tight junctions and melanoma‑ released serine proteases. PLoS One 2011; 6(6): e20758. doi: 10.1371/ journal.pone.0020758.
20. Haidari M, Zhang W, Wakame K. Disruption of endothelial adherens junction by invasive breast cancer cells is mediated by reactive oxygen species and is attenuated by AHCC. Life Sci 2013; 93(25– 26): 994– 1003. doi: 10.1016/ j.lfs.2013.10.027.
21. Leroy‑ Dudal J, Demeilliers C, Gallet O et al. Transmigration of human ovarian adenocarcinoma cells through endothelial extracellular matrix involves alphav integrins and the participation of MMP2. Int J Cancer 2005; 114(4): 531– 543.
22. Reymond N, Im JH, Garg R et al. Cdc42 promotes transendothelial migration of cancer cells through β1 integrin. J Cell Biol 2012; 199(4): 653– 668. doi: 10.1083/ jcb.201205169.
23. Matsushita T, Kibayashi T, Katayama T et al. Mesenchymal stem cells transmigrate across brain microvascular endothelial cell monolayers through transiently formed inter‑ endothelial gaps. Neurosci Lett 2011; 502(1): 41– 45. doi: 10.1016/ j.neulet.2011.07.021.
24. Díaz‑ Coránguez M, Segovia J, López‑ Ornelas A et al.Transmigration of neural stem cells across the blood brain barrier induced by glioma cells. PLoS One 2013; 8(4): e60655. doi: 10.1371/ journal.pone.0060655.
25. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell 2010; 141(1): 39– 51. doi: 10.1016/ j.cell.2010.03.014.
26. Hoos A, Protsyuk D, Borsig L. Metastatic growth progression caused by PSGL‑ 1- mediated recruitment of monocytes to metastatic sites. Cancer Res 2014; 74(3): 695– 704. doi: 10.1158/ 0008- 5472.CAN‑ 13- 0946.
27. Cain RJ, d‘Água BB, Ridley AJ. Quantification of transendothelial migration using three‑ dimensional confocal microscopy. Methods Mol Biol 2011; 769: 167– 190. doi: 10.1007/ 978- 1- 61779- 207- 6_12.
28. Estecha A, Sánchez‑ Martín L, Puig‑ Kröger A et al. Moesin orchestrates cortical polarity of melanoma tumour cells to initiate 3D invasion. J Cell Sci 2009; 122(Pt 19):3492– 3501. doi: 10.1242/ jcs.053157.
29. Muller WA, Luscinskas FW. Assays of transendothelial migration in vitro. Methods Enzymol 2008; 443: 155– 176. doi: 10.1016/ S0076- 6879(08)02009- 0.
30. Carman CV. High‑resolution fluorescence microscopy to study transendothelial migration. Methods Mol Biol 2012; 757: 215– 245. doi: 10.1007/ 978- 1- 61779- 166- 6_15.
31. Resnick N, Yahav H, Shay‑ Salit A et al. Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol 2003; 81(3): 177– 199.
32. Cucullo L, Marchi N, Hossain M et al. A dynamic in vitro BBB model for the study of immune cell trafficking into the central nervous system. J Cereb Blood Flow Metab 2011; 31(2): 767– 777. doi: 10.1038/ jcbfm.2010.162.
33. Adams Y, Rowe JA. The effect of anti‑rosetting agents against malaria parasites under physiological flow conditions. PLoS One 2013; 8(9): e73999. doi: 10.1371/ journal.pone.0073999.
34. Dong C, Slattery MJ, Liang S et al. Melanoma cell extravasation under flow conditions is modulated by leukocytes and endogenously produced interleukin 8. Mol Cell Biomech 2005; 2(3): 145– 159.
35. Liang S, Slattery MJ, Wagner D et al. Hydrodynamic shear rate regulates melanoma‑ leukocyte aggregation, melanoma adhesion to the endothelium, and subsequent extravasation. Ann Biomed Eng 2008; 36(4): 661– 671. doi: 10.1007/ s10439- 008- 9445- 8.
36. Cucullo L, McAllister MS, Kight K et al. A new dynamic in vitro model for the multidimensional study of astrocyte‑ endothelial cell interactions at the blood‑ brain barrier. Brain Res 2002; 951(2): 243– 254.
37. Zervantonakis IK, Hughes‑ Alford SK, Charest JL et al.Three‑ dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci USA 2012; 109(34): 13515– 13520. doi: 10.1073/ pnas.1210182109.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2014 Issue Supplementum
Most read in this issue
- Protein Expression and Purification
- Methods for Studying Tumor Cell Migration and Invasiveness
- Next Generation Sequencing – Application in Clinical Practice
- Analysis of Protein Using Mass Spectrometry