Changes in urinary and serum markers of renal injury in adult patients after angiographic contrast medium administration
Authors:
M. Fořtová 1; B. Sopko 1; D. Zemánek 2,3; M. Oravec 2; E. Klapková 1; R. Průša 1
Authors‘ workplace:
Ústav lékařské chemie a klinické biochemie 2. LF UK a FN Motol, Praha
1; Kardiologická klinika 2. LF UK a FN Motol, Praha
2; II. interní klinika kardiologie a angiologie 1. LF UK a VFN, Praha
3
Published in:
Klin. Biochem. Metab., 27, 2019, No. 2, p. 83-89
Overview
Objective: Monitoring of renal injury parameters changes after contrast medium (CM) administration in patients after angiographic examination, depending on the initial estimated glomerular filtration (eGF).
Design: Prospective study.
Settings: Department of Medical Chemistry and Clinical Biochemistry, University Hospital Motol, Charles University, Second Faculty of Medicine; Department of Cardiology, University Hospital Motol, Charles University, Second Faculty of Medicine; V Úvalu 84, 150 06 Prague 5 (Czech Republic).
Material and Methods: The study included 40 patients who underwent angiographic examination. Based on the input value of eGFCKD-EPI, we divided the entire group into two subgroups: subgroup with eGF ≥ 1 mL/s/1.73 m2 was composed of 28 patients (19 M and 9 F, age 61.5 ± 10.7 years) and a subgroup with eGF < 1 mL/s/1.73 m2 of 12 patients (5 M and 7 F, age 74.6 ± 6.2 years). At 0, 4 and 24 hours after the CM administration, serum samples were taken to examine creatinine and cystatin C, and, at 0, 4, 12, and 24 hours following the CM administration urine samples were taken to examine neutrophil gelatinase-associated lipocalin (NGAL), N-acetyl-β-D-glucosaminidase (NAG), α-1-microglobulin, albumin and creatinine. The bootstrap statistical methods were used for statistical analyses.
Results: At 12 and 24 hours after CM administration, there were a statistically significant increase in urinary concentrations of NGAL, α-1-microglobulin (p < 0.05) and NAG (p = 0.05 in time 24 hours); no statistically significant changes in albuminuria, serum creatinine and cystatin C concentrations, or GF derived from these markers occurred within 24 hours after CM administration. All monitored markers developed similarly in each subgroup.
Conclusion: In our study, in patients after CM administration, the increase of urinary NGAL, α-1-microglobulin and NAG concentrations was preceded by an increase in serum creatinine, cystatin C and albuminuria.
Keywords:
neutrophil gelatinase-associated lipocalin – α-1-microglobulin – N-acetyl-β-D-glucosaminidase – albuminuria – contrast medium-induced nephropathy
Sources
1. Moura, E. L. B., Amorim, F. F., Huang, W., Maia, M. O. Contrast-induced acute kidney injury: the importance of diagnostic criteria for establishing prevalence and prognosis in the intensive care unit. Rev. Bras. Ter. Intensiva, 2017, 29 (3), p. 303–309.
2. Mehta, R. L., Kellum, J. A., Shah, S. V. et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care, 2007, 11 (2), R31.
3. American College of Radiology. ACR Manual on Contrast Media. Version 9. 2013. Contrast-induced nephrotoxicity; p. 33–42. Available at:http://aegysgroup.com/wp-content/uploads/2014/03/170675431-2013-Contrast-Media-ACR-v-9.
4. Mehran, R., Nikolsky, E. Contrast-induced nephropathy: definition, epidemiology, and patients at risk. Kidney Int. Suppl., 2006, 100 (69), S11–S15.
5. Mohammed, N. M. A., Mahfouz, A., Achkar, K., Rafie, I. M., Hajar, R. Contrast-induced nephropathy. Heart Views, 2013, 14 (3), p. 106–116.
6. Vachek, J., Zakiyanov, O., Bandúr, Š., Tesař, V. Akutní poškození ledvin. Kardiol. Rev. Int. Med., 2014, 16 (1), p. 57–61.
7. Madyoon, H., Croushore, L., Weaver, D., Mathur, V. Use of fenoldopam to prevent radiocontrast nephropathy in high-risk patients. Catheter. Cardiovasc. Interv., 2001, 53 (3), p. 341–345.
8. Ling, W., Zhaohui, N., Ben, H. et al. Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography. Nephron Clin. Pract., 2008, 108 (3), p. 176–181.
9. Lautin, E. M., Freeman, N. J., Schoenfeld, A. H. et al. Radiocontrast-associated renal dysfunction: Incidence and risk factors. Am. J. Roentgenol., 1991, 157 (1), p. 49–58.
10. Svojanovský, J., Ševela, K., Souček, M. Kontrastní látkou indukovaná nefropatie. Interní Med., 2011, 13 (5), p. 205–208.
11. Grubb, A., Horio, M., Hansson, L. O. et al. Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator. Clin. Chem., 2014, 60 (7), p. 974–986.
12. Fořtová, M., Klapková, E., Průša, R. Stanovení albuminurie – porovnání imunoturbidimetrické metody a vysokoúčinné kapalinové chromatografie. Klin. Biochem. Metab., 2012, 20 (41), p. 216–221.
13. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int., 2013, Suppl. 3, p. 1–150.
14. Zima, T., Racek, J., Tesař, V. et al. Doporučení
k diagnostice chronického onemocnění ledvin (odhad glomerulární filtrace a vyšetřování proteinurie) České
nefrologické společnosti ČLS JEP a České společnosti klinické biochemie ČLS JEP. Klin. Biochem. Metab., 2014, 22 (43), p. 138–152.
15. White, I. R., Thompson, S. G. Choice of test for comparing two groups, with particular application to skewed outcomes. Stat. Med., 2003, 22 (8), p. 1205–1215.
16. R Core Team. R: A language and environment for statistical computing, 2014, R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
17. Canty, A., Ripley, B. D. Boot: Bootstrap R (S-Plus) Functions, R package version 1.3-18, 2016.
18. Bachorzewska-Gajewska, H., Malyszko, J., Sitniewska E., Malyszko, J. S., Dobrzycki, S. Neutrophil-gelatinase-associated lipocalin and renal function after percutaneous coronary interventions. Am. J. Nephrol., 2006, 26 (3), p. 287–292.
19. Weber, C. L., Bennett, M., Er, L., Bennett, M. T., Levin, A. Urinary NGAL levels before and after coronary angiography: a complex story. Nephrol. Dial. Transplant., 2011, 26 (10), p. 3207–3211.
20. McCullough, P. A., Williams, F. J., Stivers, D. N. et al. Neutrophil gelatinase-associated lipocalin: a novel marker of contrast nephropathy risk. Am. J. Nephrol., 2012, 35 (6), p. 509–514.
21. Akrawinthawong, K., Ricci, J., Cannon, L. et al. Subclinical and clinical contrast-induced acute kidney injury: data from a novel blood marker for determining the risk of developing contrast-induced nephropathy (ENCINO), a prospective study. Ren. Fail., 2015, 37 (2), p. 187–191.
22. Hirsch, R., Dent, C., Pfriem, H. et al. NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr. Nephrol., 2007, 22 (12), p. 2089–2095.
23. Bachorzewska-Gajewska, H., Malyszko, J., Sitniewska, E. et al. Could neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C predict the development of contrast-induced nephropathy after percutaneous coronary interventions in patients with stable angina and normal serum creatinine values? Kidney Blood Press. Res., 2007, 30 (6), p. 408–415.
24. Torregrosa, I., Montoliu, C., Urios, A. et al. Urinary KIM-1, NGAL and L-FABP for the diagnosis of AKI in patients with acute coronary syndrome or heart failure undergoing coronary angiography. Heart Vessels, 2015, 30 (6), p. 703–711.
25. Ribitsch, W., Schilcher, G., Quehenberger, F. et al. Neutrophil gelatinase-associated lipocalin (NGAL) fails as an early predictor of contrast induced nephropathy in chronic kidney disease (ANTI-CI-AKI study). Sci. Rep., 2017, 7, p. 41300.
26. Cecchi, E., Avveduto, G., D’Alfonso, M. G. et al. Cystatin C, but not urinary or serum NGAL, may be associated with contrast induced nephropathy after percutaneous coronary invasive procedures: A single center experience on a limited number of patients. Acta Med. Acad., 2017, 46 (1), p. 34–43.
27. Kato, K., Sato, N., Yamamoto, T., Iwasaki, Y. K., Tanaka, K., Mizuno, K. Valuable markers for contrast-induced nephropathy in patients undergoing cardiac catheterization. Circ. J., 2008, 72 (9), p. 1499–1505.
28. Carraro, M., Mancini, W., Artero, M. et al. Dose effect of nitrendipine on urinary enzymes and microproteins following non-ionic radiocontrast administration. Nephrol. Dial. Transplant., 1996, 11 (3), p. 444–448.
29. Niboshi, A., Nishida, M., Itoi, T., Shiraishi, I., Hamaoka, K. Renal function and cardiac angiography. Indian J. Pediatr., 2006, 73 (1), p. 49–53.
30. Helmersson-Karlqvist, J., Arnlöv, J., Larsson, A. Day-to-day variation of urinary NGAL and rational for creatinine correction. Clin. Biochem., 2013, 46 (1–2), p. 70–72.
Labels
Clinical biochemistry Nuclear medicine Nutritive therapistArticle was published in
Clinical Biochemistry and Metabolism
2019 Issue 2
Most read in this issue
- Comparison of troponin I (Abbott, Beckman Coulter, Siemens) and troponin T (Roche) high-sensitivity measurement results
- POCT system for the fecal calprotectin detection in the tele-monitoring of patients with inflammatory bowel disease
- Changes in urinary and serum markers of renal injury in adult patients after angiographic contrast medium administration
- Fatty acid elongases and their involvement in the pathogenesis of disease states