#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Vitamin K and its importance in laboratory medicine


Authors: K. Dunovská;  E. Klapková;  J. Čepová;  R. Průša
Authors‘ workplace: Ústav lékařské chemie a klinické biochemie 2. LF UK a FN Motol, Praha
Published in: Klin. Biochem. Metab., 26, 2018, No. 1, p. 27-34

Overview

Vitamin K belongs to the group of the fat-soluble vitamins and there are three forms of vitamin K – K1, K2, K3. Vitamin K acts as cofactor of post-translational carboxylation of glutamic acid to γ-carboxyglutamic acid, which is important for binding of calcium ions by coagulation factors, protein C and protein S. It participates in functions of other proteins interacting with calcium ions e.g. osteocalcin and matrix Gla protein. Vitamin K1 plays a role especially in blood coagulation while vitamin K2 affects bone remodeling and calcium homeostasis. An anticancer effect is described at all of forms of vitamin K, however the best results in vitro and in vivo were described by vitamin K3 for now. Daily intake of vitamin K1 in a Western diet is sufficient for blood coagulation, whereas daily intake of vitamin K2 is insufficient for covering carboxylation of vitamin K dependent proteins. Insufficient carboxylation of vitamin K dependent proteins is associated with higher risk of osteoporosis fracture´s occurrence, and excessive calcification of vascular walls due to calcium paradox. Vitamin K is absorbed from the gastrointestinal tract in the presence of bile salts and pancreatic lipase, and in plasma is transported by lipoproteins.  The reference range of vitamin K1 can be found in the literature whereas the reference range of vitamin K2 has been not published. Vitamin K can be determined by chromatografic methods.

Key words:
vitamin K1, vitamin K2, osteoporosis, cancer, diabetes mellitus, cardiovascular diseases, HPLC.


Sources

1.     Food and Agriculture Organization of the United Nations/World Health Organization. Human vitamin and mineral requirements. Report of a joint FAO/WHO expert consultation 2001, Bangkok, Thajsko, 286 stran.

2.     Masterjohn, C. On the trail of the elusive X-factor: A sixty-two-year-old mystery finally solved. 2008,  http://www.westonaprice.org/health-topics/abcs-of-nutrition/on-the-trail-of-the-elusive-x-factor-a-sixty-two-year-old-mystery-finally-solved/ (25.5.2017)

3.     Kazda, A. Kritické stavy: metabolická a laboratorní problematika. 1.vyd., Galén. Praha, 2012, 346 s. ISBN: 978-80-7262-763-9.

4.     Sadowski, J. A., Hood, S. J., Dallal, G. E., Garry, P. J. Phylloquinone in plasma from elderly and young adults: factors influencing its concentration. Am. J Clin. Nutr., 1989, 50(1), p.  100-108.

5.     Kraemer, C. M. Vitamin K, Medscape Reference. 2015.  http://emedicine.medscape.com/article/2088738-overview (9.6.2017)

6.    Immundiagnostik, A.G. Vitamin K1 HPLC Kit: For the determination of vitamin K1 in plasma and serum. 2008, 26 stran. (návod na použití kitu pro stanovení vitaminu K1).

7.     Wang, L. Y., Bates, C. J., Ya, L., Harrington, D. J., Shearer, M. J., Prentice, A. Determination of phylloquinone (vitamin K1) in plasma and serum by HPLC with fluorescence detection. Clin. Chim. Acta, 2004, 347(1-2), p. 199-207.

8.     Paroni, R., Faioni, E. M., Razzari, C., Fontana, G., Cattaneo, M. Determination of vitamin K1 in plasma by solid phase extraction and HPLC with fluorescence detection. J Chromatogr. B, 2009, 877(3), p. 351-354.

9.     Kamao, M., Suhara, Y., Tsugawa, N., Okano, T. Determination of plasma vitamin K by high-performance liquid chromatography with fluorescence detection using vitamin K analogs as internal standards. J Chromatogr. B, 2005, 816(1–2), p. 41-48.

10.   Marinova, M., Lütjohann, D., Westhofen, P., Watzka, M., Breuer, O., Oldenburg, J. A validated HPLC method for the determination of vitamin K in human serum – first application in pharmacological study. Open Clin. Chem. J, 2011, 4, p. 17-27.

11.   Ahmed, S., Kishikawa, N., Nakashima, K., Kuroda, N. Determination of vitamin K homologues by high-performance liquid chromatography with on-line photoreactor and peroxyoxalate chemiluminescence detection. Anal. Chim. Acta, 2007, 591(2), p. 148-154.

12.   Tsugawa, N., Shiraki, M., Suhara, Y., Kamao, M., Tanaka, K., Okano, T. Vitamin K status of healthy Japanese women: Age-related vitamin K requirement for gamma-carboxylation of osteocalcin. Am. J Clin. Nutr., 2006, 83, p. 380-386.

13.   Song, Q., Wen, A., Ding, L., Dai, L., Yang, L., Qi, X. HPLC-APCI-MS for determination of vitamin K1 in human plasma: Method and clinical application. J Chromatogr. B, 2008, 875, p. 541-545.

14.   Fusaro, M., Gallieni, M., Rizzo, M. A. et al. Vitamin K plasma levels determination in human health. Clin. Chem. Lab. Med., 2017, 55(6), p. 789-799.

15.   Riphagen, I. J., van der Molen, J. C., van Faassen, M. et al. Measurement of plasma vitamin K1 (phylloquinone) and K2 (menaquinones-4  and -7) using HPLC-tandem mass spectrometry. Clin. Chem. Lab. Med., 2016, 54(7), p. 1201-1210.

16.   Walther, B., Karl, P. J., Booth, S. L., Boyaval, P. Menaquinones, bacteria, and the food supply: the revalence of dairy and fermented food products to vitamin K requirements. Adv. Nutr., 2013, 4(4), p. 463-473.

17.   Sato, T., Schurgers, L. J., Uenishi, K. Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutr. J, 2012, 11(93), p. 1-4.

18.   Gröber, U., Reichrath, J., Holick, M. F., Kisters, K. Vitamin K: an old vitamin in a new perspective. Dermato-Endocrinology, 2014, 6(1), e968490.

19.   Thrailkill, K. M., Jo, C.-H., Cockrell, G. E., Moreau, C. S., Lumpkin, C. K., Fowlkes, J. L. Determinants of undercarboxylated and carboxylated osteocalcin concentrations in type 1 diabetes. Osteoporosis International: A Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 2012, 23(6), p. 1799–1806.

20.   Schurgers, L. J., Teunissen, K. J., Hamulyák, K., Knapen, M. H., Vik, H., Vermeer, C. Vitamin K-containing dietary supplements: comparison of synthetic vitamin K1 and natto-derived menaquinone-7. Blood, J Am. Soc. Hematol., 2007, 109(8), p. 3279-3283.

21.   Stafford, D. W. The vitamin K cycle. Journal of Thrombosis and Haemostasis, 2005, 3, p. 1873 – 1878.

22.   Tie, J. K., Stafford, D. W. Structural and fuctional insights into enzymes of the vitamin K cycle. Journal of Thrombosis and Haemostasis, 2015, 14, p. 236 – 247.

23.   Prithviraj, D., A, S., Paul, A. M. Fetal warfarin syndrome. Journal of evolution and medical and dental sciencies, 2014, 3(16), p. 4262-4268.

24.   Gheorghe, S. R., Crăciun, A. M. Matrix Gla Protein in Tumoral Pathology. Clujul Medical, 2016, 89, (3), p. 319-321.

25.   Geleijnse, J. M., Vermeer, C., Grobbee, D. E. et al. Dieetary intake of menaquinone is associated with a reduced risk of coronary heart disease: The Rotterdam study. J Nutr., 2004, 134(11), p. 3100-3105.

26.   Nakaya, K., Masuda, Y., Aiuchi, T., Itabe, H. Vitamin K2 as a chemotherapeutic agent for treating ovarian cancer. Ovarian Cancer – Clinical and Therapeutic Perspectives, 2012, p. 259-274. http://www.intechopen.com/books/ovarian-cancer-clinical-and-therapeutic-perspectives/vitamin-k2-as-a-chemotherapeutic-agent-for-treating-ovarian-cancer (6.6.2017)

27.   Beulens, J. W. J., van der A, D. L., Grobbee, E., Sluijs, I., Spijkerman, A. M. W., van der Schouw, Y. T. Dietary phylloquinone and menaquinones intakes and risk of type 2 diabetes. Diabet. Care, 2010, 33(8), p. 1699-1705.

28.   Ngarmukos, C., Chailurkit, L., Chanprasertyothin, S., Hengprasith, B., Drotara, P., Ongphiphadhanakul, B. A reduced serum level of total osteocalcin in men predicts the development of diabetes in a long-term follow-up kohort. Clin. Endocrionol., 2013, 77, p. 42-46.

29.   Zwakenberg, S. R., Gundberg, C. M., Spijkerman, A. M. W., van der A, D. L., van der Schoul, Y. T., Beulens, J. W. J. Osteocalcin Is Not Associated with the Risk of Type 2 Diabetes: Finding from the EPIC-NL Study. PLoS ONE, 2015, 10(9), e0138693.

30.   Paudel, A., Hamamoto, H., Panthee, S., Sekimizu, K. Menaquinone as a potential target of antibacterial agents. Drug Discoveries and Therapeutics, 2016, 10(3), p. 123-128.

31.   Penka, M., Buliková, A., a kolektiv. Neonkologická hematologie. 2. doplněné a zcela přepracované vydání., Grada. Praha, 2009. ISBN 978-80-247-2299-3.

32.   Stalder, G., Que, Y. A., Calzavarini, S. et al. Study of early elevated Gas6 plasma level as a predictor of mortality in a prospective cohort of patiens with sepsis. PLoS ONE, 2016, 11(10), p. 1-13.

33.   Ferland, G. The discovery of vitamin K and its clinical applications.  Ann. Nutr. Metabol., 2012, 61(3), p. 213-218.

34.   Cui, R., He, J., Zhang, F. et al. Diagnostic value of protein induced by vitamin K absence (PIVKAII) and hepatoma-specific band of serum gamma-glutamyl transferase (GGTII) as hepatocellular carcinoma markers complementary to alpha-fetoprotein. British Journal of Cancer, 2003, 88(12), p. 1878-1882.

35.   http://www.viennalab.com/products/pharmacogenetics/pgx-thrombo_stripassay (9. 6. 2017)

Labels
Clinical biochemistry Nuclear medicine Nutritive therapist
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#