Fluorescent angiography in colorectal surgery, the influence of augmented reality in the operating room on the anastomotic leakage after low rectal resection
Authors:
V. Benčurik 1,5; M. Skrovina 1,2,5; L. Martínek 1,3; J. Bartoš 1; M. Macháčková 1; M. Dosoudil 1; E. Štěpánová 1; L. Přibylová 4; R. Briš 4; P. Anděl 1; H. Hlavíková 1
Authors‘ workplace:
Chirurgické odděleni, Nemocnice Nový Jičín
1; Chirurgická klinika, Lékařská a zubná fakulta, Univerzita Palackého Olomouc
2; Chirurgická klinika, Lékařská fakulta, Ostravská univerzita
3; Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, VŠB – Technická Univerzita Ostrava
4; Výzkumný a vzdělávací institut AGEL, Prostějov
5
Published in:
Rozhl. Chir., 2021, roč. 100, č. 11, s. 543-551.
Category:
doi:
https://doi.org/10.33699/PIS.2021.100.11.543–551
Overview
Introduction: Near-infrared (NIR) fluorescence angiography (FA) is an augmented reality (AR) technique. When used in the operating room, it allows colorectal surgeons to visualize and evaluate intestinal blood flow in real time, identify lymph nodes, ureters, or peritoneal metastases. Evaluation of perfusion with FA in augmented reality mode has an impact on reducing the ALR (anastomotic leakage rate) in rectal resections.
Methods: Data analysis of patients after minimally invasive surgery (MIS) for middle and lower rectal adenocarcinoma with total mesorectal excision (TME) using fluorescent angiography (FA) with indocyanine green (ICG) (100 patients, 2015−2019) were subsequently compared with a historical control group (100 patients) operated on for the same diagnosis before the introduction of the FA-ICG method (2012−2015) using minimally invasive approach (MIS). The patients were operated on consequently at one workplace.
Results: In fifteen patients (15%), the resection line was shifted due to insufficient perfusion detected by FA-ICG. The incidence of AL was lower in the group with FA compared to the group without FA (9% vs. 19%, p=0.042, χ test). A retrospective analysis of the group revealed a significant risk factor (RF) for the anastomotic leak, namely diabetes (p=0.036) and, among others, a protective factor, application of the transanal drain (NoCoil) (p=0.032).
Conclusion: The introduction of new procedures and the use of new technologies, such as the use of the FA method in the AR mode in resections of the rectum with TME for cancer can lead to a reduction in the incidence of anastomotic leakage.
Keywords:
anastomotic leakage − rectal resections − fluorescence angiography − augmented reality
Sources
1. Reinhart MB, Huntington CR, Blair LJ, et al. Indocyanine green: Historical context, current applications, and future considerations. Surg Innov. 2016 Apr;23(2):166−175. doi: 10.1177/1553350615604053. Epub 2015 Sep 10. PMID: 26359355.
2. Benson RC, Kues HA. Fluorescence properties of indocyanine green as related to angiography. Phys Med Biol. 1978 Jan;23(1):159−163. doi: 10.1088/0031- 9155/23/1/017. PMID: 635011.
3. Jafari MD, Lee KH, Halabi WJ, et al. The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg Endosc. 2013 Aug;27(8):3003−3008. doi: 10.1007/s00464-013-2832-8. Epub 2013 Feb 13. PMID: 23404152.
4. Emile SH, Elfeki H, Shalaby M, et al. Sensitivity and specificity of indocyanine green near-infrared fluorescence imaging in detection of metastatic lymph nodes in colorectal cancer: Systematic review and meta-analysis. J Surg Oncol. 2017 Nov;116(6):730−740. doi: 10.1002/ jso.24701. Epub 2017 Jun 1. PMID: 28570748.
5. Liberale G, Bourgeois P, Larsimont D, et al. Indocyanine green fluorescence-guided surgery after IV injection in metastatic colorectal cancer: A systematic review. Eur J Surg Oncol. 2017 Sep;43(9):1656−1667. doi: 10.1016/j.ejso.2017.04.015. Epub 2017 May 8. PMID: 28579357.
6. Foppa C, Spinelli A. Ureteric identification with indocyanine green fluorescence in laparoscopic redo pouch surgery. Tech Coloproctol. 2018 Aug;22(8):627−628. doi: 10.1007/s10151-018-1838-6. Epub 2018 Aug 28. PMID: 30167911.
7. McDermott FD, Heeney A, Kelly ME, et al. Systematic review of preoperative, intraoperative and postoperative risk factors for colorectal anastomotic leaks. Br J Surg. 2015 Apr;102(5):462−479. doi: 10.1002/bjs.9697. Epub 2015 Feb 19. PMID: 25703524.
8. Kudszus S, Roesel C, Schachtrupp A, et al. Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbecks Arch Surg. 2010 Nov;395(8):1025−1030. doi: 10.1007/s00423-010-0699-x. Epub 2010 Aug 12. PMID: 20700603.
9. Vignali A, Gianotti L, Braga M, et al. Altered microperfusion at the rectal stump is predictive for rectal anastomotic leak. Dis Colon Rectum 2000 Jan;43(1):76−82. doi: 10.1007/BF02237248. PMID: 10813128.
10. Darwich I, Rustanto D, Friedberg R, er al. Spectrophotometric assessment of bowel perfusion during low anterior resection: a prospective study. Updates Surg. 2019 Dec;71(4):677−686. doi: 10.1007/ s13304-019-00682-9. Epub 2019 Oct 12. PMID: 31606856; PMCID: PMC6892764.
11. Boni L, Fingerhut A, Marzorati A, e al. Indocyanine green fluorescence angiography during laparoscopic low anterior resection: results of a case-matched study. Surg Endosc. 2017 Apr;31(4):1836−1840. doi: 10.1007/s00464-016-5181-6. Epub 2016 Aug 23. PMID: 27553790.
12. Skrovina M, Bencurik V, Martinek L, et al. The significance of intraoperative fluorescence angiography in miniinvasive low rectal resections. Wideochir Inne Tech Maloinwazyjne 2020 Mar;15(1):43−48. doi: 10.5114/wiitm.2019.84851. Epub 2019 May 8. PMID: 32117485; PMCID: PMC7020717.
13. R Core Team: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria 2019. URL https://www.R-project. org/
14. Kudszus S, Roesel C, Schachtrupp A, et al. Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbecks Arch Surg. 2010 Nov;395(8):1025−1030. doi: 10.1007/s00423-010-0699-x. Epub 2010 Aug 12. PMID: 20700603.
15. van den Bos J, Al-Taher M, Schols RM, et al. Near-infrared fluorescence imaging for real-time intraoperative guidance in anastomotic colorectal surgery: A systematic review of literature. J Laparoendosc Adv Surg Tech A. 2018 Feb;28(2):157−167. doi: 10.1089/ lap.2017.0231. Epub 2017 Nov 6. PMID: 29106320.
16. Watanabe J, Ishibe A, Suwa Y, et al. Indocyanine green fluorescence imaging to reduce the risk of anastomotic leakage in laparoscopic low anterior resection for rectal cancer: a propensity scorematched cohort study. Surg Endosc. 2020 Jan;34(1):202−208. doi: 10.1007/s00464- 019-06751-9. Epub 2019 Mar 14. PMID: 30877565.
17. De Nardi P, Elmore U, Maggi G, et al. Intraoperative angiography with indocyanine green to assess anastomosis perfusion in patients undergoing laparoscopic colorectal resection: results of a multicenter randomized controlled trial. Surg Endosc. 2020 Jan;34(1):53−60. doi: 10.1007/ s00464-019-06730-0. Epub 2019 Mar 21. PMID: 30903276.
18. Blanco-Colino R, Espin-Basany E. Intraoperative use of ICG fluorescence imaging to reduce the risk of anastomotic leakage in colorectal surgery: a systematic review and meta-analysis. Tech Coloproctol. 2018 Jan;22(1):15−23. doi: 10.1007/s10151-017-1731-8. Epub 2017 Dec 11. PMID: 29230591.
19. Ris F, Liot E, Buchs NC, et al. Near-infrared anastomotic perfusion assessment network VOIR. Multicentre phase II trial of near-infrared imaging in elective colorectal surgery. Br J Surg. 2018 Sep;105(10):1359−1367. doi: 10.1002/ bjs.10844. Epub 2018 Apr 16. PMID: 29663330; PMCID: PMC6099466.
20. Martínek L, Pazdírek F, Hoch J, et l. Technické aspekty fluorescenční angiografie pro peroperační hodnocení perfuze anastomózy v kolorektální chirurgii. Rozhl Chir. 2018;97(4):167−171. PMID: 29726262.
21. Chang YK, Foo CC, Yip J, et al. The impact of indocyanine-green fluorescence angiogram on colorectal resection. Surgeon 2019 Oct;17(5):270−276. doi: 10.1016/j. surge.2018.08.006. Epub 2018 Sep 5. PMID: 30195865.
22. Son GM, Kwon MS, Kim Y, et al. Quantitative analysis of colon perfusion pattern using indocyanine green (ICG) angiography in laparoscopic colorectal surgery. Surg Endosc. 2019 May;33(5):1640−1649. doi: 10.1007/s00464-018-6439-y. Epub 2018 Sep 10. PMID: 30203201; PMCID: PMC6484815.
23. Diana M, Halvax P, Dallemagne B, et al. Real-time navigation by fluorescence- based enhanced reality for precise estimation of future anastomotic site in digestive surgery. Surg Endosc. 2014 Nov;28(11):3108−3118. doi: 10.1007/ s00464-014-3592-9. Epub 2014 Jun 10. PMID: 24912446.
24. Wang S, Zhang Z, Liu M, et al. Efficacy of transanal tube placement after anterior resection for rectal cancer: a systematic review and meta-analysis. World J Surg Oncol. 2016 Mar 31;14:92. doi: 10.1186/ s12957-016-0854-0. PMID: 27030245; PMCID: PMC4815125.
25. Hanna MH, Vinci A, Pigazzi A. Diverting ileostomy in colorectal surgery: when is it necessary? Langenbecks Arch Surg. 2015 Feb;400(2):145−152. doi: 10.1007/ s00423-015-1275-1. Epub 2015 Jan 30. PMID: 25633276.
Labels
Surgery Orthopaedics Trauma surgeryArticle was published in
Perspectives in Surgery
2021 Issue 11
Most read in this issue
- Total mesorectal excision for rectal cancer – laparoscopic versus robotic approach
- Quality of life after transanal total mesorectal excision – our experience
- Midgut volvulus in adult age associated with congenital malrotation – case report
- TaTME (transanal total mesorectal excision) – state of the art