Adipose tissue collection from a living kidney donor; an experimental model for the research of atherosclerosis
Authors:
F. Thieme 1,2; L. Janoušek 1,2; A. Králová 3; S. Čejková 3; I. Králová Lesná 3; R. Poledne 3; J. Froněk 1,2,4
Authors‘ workplace:
Klinika transplantační chirurgie, Institut klinické a experimentální medicíny, Praha
1; 1. lékařská fakulta Univerzity Karlovy, Praha
2; Laboratoř pro výzkum aterosklerózy, Institut klinické a experimentální medicíny, Praha
3; Ústav anatomie, 2. lékařská fakulta Univerzity Karlovy, Praha
4
Published in:
Rozhl. Chir., 2019, roč. 98, č. 12, s. 476-480.
Category:
Review
doi:
https://doi.org/10.33699/PIS.2019.98.12.476–480
Overview
Thanks to an increased number of living-donor kidney transplants the IKEM transplant program offers the possibility of obtaining adipose tissue for scientific purposes from patients with varying degrees of atherosclerosis. Surgery mainly addresses vascular complications of this disease. On the other hand, surgery may also be the reason for the development and acceleration of atherosclerosis – for instance, acceleration of atherosclerosis in the living kidney donor, particularly if, although meeting internationally recognized donation criteria, the donor actually suffers from metabolic syndrome. The effort to refine the examinations of living kidney donors in terms of eliminating the risk of developing atherosclerosis is a long-term project. The aims are to determine the risk factors for living kidney donors and to prevent long-term complications after donation. The paper gives a detailed description of the technique of adipose tissue collection from a living kidney donor and of the experimental model for the research of atherosclerosis.The project has the potential to increase the safety of living kidney donation and to enhance our present knowledge of atherosclerosis development mechanisms.
Keywords:
Atherosclerosis – perivascular adipose tissue – living-donor kidney transplant – metabolic syndrome
Sources
- Kralova Lesna I, Suchanek P, Brabcova E, et al. Effect of different types of dietary fatty acids on subclinical inflammation in humans. Physiol Res. 2013;62:145–52.
- Jonasson L, Holm J, Skalli O, et al. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 1986;6:131–8. doi: 10.3109/00016347309157091.
- Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999; 340:115–26. doi: 10.1056/NEJM199901143400207.
- Stary HC. Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults. Arteriosclerosis 1989;9:I19–32.
- Cejkova S, Kralova Lesna I, Fronek J, et al. Pro-inflammatory gene expression in adipose tissue of patients with atherosclerosis. Physiol Res. 2017;66:633–40.
- Geissmann F, Auffray C, Palframan R, et al. Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol Cell Biol. 2008;86:398–408. doi: 10.1038/icb.2008.19.
- Galkina E, Ley K. Leukocyte influx in atherosclerosis. Curr Drug Targets 2007;8:1239–48. doi: 10.2174/138945007783220650.
- Stoger JL, Gijbels MJ, van der Velden S, et al. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 2012;225:461–8. doi: 10.1016/j.atherosclerosis.2012.09.013.
- Cho KY, Miyoshi H, Kuroda S, et al. The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery. J Stroke Cerebrovasc Dis. 2013;22:910–8. doi: 10.1016/j.jstrokecerebrovasdis.2012.11.020.
- Kralova A, Kralova Lesna I, Poledne R. Immunological aspects of atherosclerosis. Physiol Res. 2014;63 Suppl 3: S335–42.
- Cinti S. Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ. J Endocrinol Invest. 2002;25:823–35. doi: 10.1007/BF03344046.
- Hitsumoto T, Takahashi M, Iizuka T, et al. Relationship between metabolic syndrome and early stage coronary atherosclerosis. J Atheroscler Thromb. 2007;14:294–302. doi: 10.5551/jat.e506.
- Cejkova S, Kubatova H, Thieme F, et al. The effect of cytokines produced by human adipose tissue on monocyte adhesion to the endothelium. Cell Adh Migr. 2019;13:293–302. doi: 10.1080/19336918.2019.1644856.
- Matsuzawa Y. The metabolic syndrome and adipocytokines. FEBS Lett. 2006;580:2917–21. doi: 10.1016/j.febslet.2006.04.028.
- Teramoto T, Sasaki J, Ueshima H, et al. Metabolic syndrome. J Atheroscler Thromb. 2008;15:1–5. doi: 10.5551/jat.e580.
- Trayhurn P. Adipose tissue in obesity—an inflammatory issue. Endocrinology 2005;146:1003–5. doi: 10.1210/en.2004-1597.
- Gao YJ. Dual modulation of vascular function by perivascular adipose tissue and its potential correlation with adiposity/lipoatrophy-related vascular dysfunction. Curr Pharm Des. 2007;13:2185–92. doi: 10.2174/138161207781039634.
- Gao YJ, Lu C, Su LY, et al. Modulation of vascular function by perivascular adipose tissue: the role of endothelium and hydrogen peroxide. Br J Pharmacol. 2007;151:323–31. doi: 10.1038/sj.bjp.0707228.
- Fernandez-Alfonso MS, Somoza B, Tsvetkov D, et al. Role of perivascular adipose tissue in health and disease. Compr Physiol. 2017;8:23–59. doi: 10.1002/cphy.c170004.
- Horimatsu T, Patel AS, Prasad R, et al. Remote effects of transplanted perivascular adipose tissue on endothelial function and atherosclerosis. Cardiovasc Drugs Ther. 2018;32:503–10. doi: 10.1007/s10557-018-6821-y.
- Barandier C, Montani JP, Yang Z. Mature adipocytes and perivascular adipose tissue stimulate vascular smooth muscle cell proliferation: effects of aging and obesity. Am J Physiol Heart Circ Physiol. 2005;289:H1807–13. doi: 10.1152/ajpheart.01259.2004.
- Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007;153:907–17. doi: 10.1016/j.ahj.2007.03.019.
- Kuman M. Solid organ transplantation in the Czech Republic. [In Czech]. VnitrLek .2015;61:741–46.
- Murray JE, Barnes BA. Human kidney transplantation. J Am Med Womens Assoc. 1968;23:985–90.
- Murray JE, Tilney NL, Wilson RE. Renal transplantation: a twenty-five year experience. Ann Surg. 1976;184:565–73. doi: 10.1097/00000658-197611000-00006.
- www.ikem.cz (2018) https://www.ikem.cz/cs/darcovstvi-organu/zivot-sup-2-sup/statistika-ikem/a-3129/.
- Kasiske BL. The evaluation of prospective renal transplant recipients and living donors. Surg Clin North Am. 1998;78:27–39. doi: 10.1016/s0039-6109(05)70632-0.
- Lentine KL, Kasiske BL, Levey AS, et al. Summary of kidney disease: Improving global outcomes (KDIGO) Clinical practice guideline on the evaluation and care of living kidney donors. Transplantation 2017;101:1783–92. doi: 10.1097/TP.0000000000001770.
- Ozdemir-van Brunschot DM, Koning GG, van Laarhoven KC, et al. A comparison of technique modifications in laparoscopic donor nephrectomy: a systematic review and meta-analysis. PLoSOne 2015;10:e0121131. doi: 10.1371/journal.pone.0121131.
- Widmer JD, Schlegel A, Kron P, et al. Hand-assisted living-donor nephrectomy: a retrospective comparison of two techniques. BMC Urol. 2018;18:39. doi: 10.1186/s12894-018-0355-2.
- Fronek JP, Chang RW, Morsy MA. Hand-assisted retroperitoneoscopic living donor nephrectomy: first UK experience. Nephrol Dial Transplant. 2006;21:2674–5. doi: 10.1093/ndt/gfl107.
- Helantera I, Honkanen E, Huhti J, et al. Living donor kidney transplantation. Duodecim 2017;133:937–44.
- Kalble T, Lucan M, Nicita G, et al. EAU guidelines on renal transplantation. Eur Urol. 2005;47:156–66. doi: 10.1016/j.eururo.2004.02.009.
- Magden K, Ucar FB, Velioglu A, et al. Donor contraindications to living kidney donation: A single-center experience. Transplant Proc. 2015;47:1299–1301. doi: 10.1016/j.transproceed.2015.04.050.
- Textor S, Taler S. Expanding criteria for living kidney donors: what are the limits? Transplant Rev. (Orlando) 2008;22:187–91. doi: 10.1016/j.trre.2008.04.005.
- Kasiske BL, Ravenscraft M, Ramos EL, et al. The evaluation of living renal transplant donors: clinical practice guidelines. Ad Hoc Clinical Practice Guidelines Subcommittee of the Patient Care and Education Committee of the American Society of Transplant Physicians. J Am Soc Nephrol. 1996;7:2288–313.
- Duvnjak L, Duvnjak M. The metabolic syndrome – an ongoing story. J Physiol Pharmacol. 2009;60 Suppl 7:19–24.
- Thomas G, Sehgal AR, Kashyap SR, et al. Metabolic syndrome and kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2011;6:2364–73. doi: 10.2215/CJN.02180311.
- Ohashi Y, Thomas G, Nurko S, et al. Association of metabolic syndrome with kidney function and histology in living kidney donors. Am J Transplant. 2013;13:2342–51. doi: 10.1111/ajt.12369.
- Rule AD, Semret MH, Amer H, et al. Association of kidney function and metabolic risk factors with density of glomeruli on renal biopsy samples from living donors. Mayo Clin Proc. 2011;86:282–90. doi: 10.4065/mcp.2010.0821.
- Jeon HG, Lee SR, Joo DJ, et al. Predictors of kidney volume change and delayed kidney function recovery after donor nephrectomy. J Urol. 2010;184:1057–63. doi: 10.1016/j.juro.2010.04.079.
- Yoon YE, Choi KH, Lee KS, et al. Impact of metabolic syndrome on postdonation renal function in living kidney donors. Transplant Proc. 2015;47:290–4. doi: 10.1016/j.transproceed.2014.10.051.
- Thieme F, Janousek L, Fronek J, et al. The effect of ectopic fat on graft function after living kidney transplantation. Physiol Res. 2015;64 Suppl 3: S411–7.
- https://www.ikem.cz/cs/darcovstvi-organu/zivot-sup-2-sup/statistika-ikem/a-3129/.
- Ross LF, Thistlethwaite JR, Jr. Long-term consequences of kidney donation. N Engl J Med. 2009;360:2371; authorreply 2372.
- Muzaale AD, Massie AB, Wang MC, et al. Risk of end-stage renal disease following live kidney donation. JAMA 2014;311:579–86. doi: 10.1001/jama.2013.285141.
- Serrano OK, Sengupta B, Bangdiwala A, et al. Implications of excess weight on kidney donation: Long-term consequences of donor nephrectomy in obese donors. Surgery 2018;164:1071–6. doi: 10.1016/j.surg.2018.07.015.
- Yildirim M, Karahan M, Kucuk HF, et al. Increased oxidative stress in living kidney donors: correlation of renal functions with antioxidant capacity. Transplant Proc. 2017;49:407–10. doi: 10.1016/j.transproceed.2017.01.028.
- Vague J [Not Available]. Presse Med. 1947;55:339.
- Bays HE, Ballantyne CM, Kastelein JJ, et al. Eicosapentaenoic acid ethyl ester (AMR101) therapy in patients with very high triglyceride levels (from the Multi-center, plAcebo-controlled, Randomized, double-blINd, 12-week study with an open-label extension [MARINE] trial). Am J Cardiol. 2011;108:682–90. doi: 10.1016/j.amjcard.2011.04.015.
- Chinetti-Gbaguidi G, Baron M, Bouhlel MA, et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARgamma and LXRalpha pathways. Circ Res. 2011;108:985–95. doi: 10.1161/CIRCRESAHA.110.233775.
- Szasz T, Webb RC. Perivascular adipose tissue: more than just structural support. ClinSci. (Lond) 2012;122:1–12. doi: 10.1042/CS20110151.
- Surmi BK, Hasty AH. The role ofchemokines in recruitment of immune cells to the artery wall and adipose tissue. Vascul Pharmacol. 2010;52:27–36. doi: 10.1016/j.vph.2009.12.004.
- Karastergiou K, Mohamed-Ali V. The autocrine and paracrine roles of adipokines. Mol Cell Endocrinol. 2010;318:69–78. doi: 10.1016/j.mce.2009.11.011.
- Kralova Lesna I, Kralova A, Cejkova S, et al. Characterisation and comparison of adipose tissue macrophages from human subcutaneous, visceral and perivascular adipose tissue. J Transl Med. 2016;14:208. doi: 10.1186/s12967-016-0962-1.
- Lesna IK, Cejkova S, Kralova A, et al. Human adipose tissue accumulation is associated with pro-inflammatory changes in subcutaneous rather than visceral adipose tissue. Nutr Diabetes 2017; 7: e264. doi: 10.1038/nutd.2017.15.
- Poledne R, Kralova Lesna I, Kralova A, et al. The relationship between non-HDL cholesterol and macrophage phenotypes in human adipose tissue. J Lipid Res. 2016;57:1899–1905. doi: 10.1194/jlr.P068015.
- Kralova Lesna I, Petras M, Cejkova S, et al. Cardiovascular disease predictors and adipose tissue macrophage polarization: Is there a link? Eur J Prev Cardiol. 2018;25:328–34. doi: 10.1177/2047487317743355.
Labels
Surgery Orthopaedics Trauma surgeryArticle was published in
Perspectives in Surgery
2019 Issue 12
Most read in this issue
- Timing of cholecystectomy as the therapy for acute calculous cholecystitis
- Prehospital blood and blood products administration
- Treatment of liver injuries at the Trauma Centre of the University Hospital in Pilsen
- Cholangioscopy and intraductal ultrasonography in the diagnosis of cholangiocarcinoma