Endovenous Laser Photocoagulation of the Insufficient Saphenous Vein in Experiment
Authors:
S. Kašpar 1; Z. Červinková 2
Authors‘ workplace:
Ústav zdravotnických studií Univerzity Pardubice, ředitel: prof. MUDr. A. Pellant, DrSc.
a Chirurgická klinika Krajské nemocnice Pardubice, přednosta: doc. MUDr. K. Havlíček, CSc.
1; Univerzita Karlova v Praze, Lékařská fakulta v Hradci Králové, Katedra fyziologie
přednostka doc. MUDr. Z. Červinková, CSc.
2
Published in:
Rozhl. Chir., 2007, roč. 86, č. 2, s. 78-84.
Category:
Monothematic special - Original
Overview
Aims:
The endovenous laser treatment of varicose veins has been using for several years throughout the world with clinical results comparable to traditional surgery. Nevertheless, many controversies still exist in the world literature in terms of parameters of laser generator and procedure itself. The aim of this laboratory study was the standardisation of the procedure and set-up of the optimal technical parameters to achieve maximal vein shrinkage as basic marker of successful long-term result.
Material and Methods:
The insufficient trunks of the long saphenous veins which were stripped during the traditional Babcock’s stripping procedure, were irradiated with the laser energy delivered by the diode generator emitting 980 nm laser beam in the laboratory settings. In total, 279 vein segments were treated. We used the power of 5W, 8W, 10W, 12W and 15W during the maximal time possible to achieve the maximal shrinkage of the saphenous vein with minimal number of perforations. The study cohort consisted of two groups – in the first group the veins were filled with the blood (n = 139), in the other one the veins were empty (n = 140) to simulate the patient’s position on the operating table. After the procedure, every vein segment was cut longitudinally, unfolded and its inner circumference was measured and compared to inner circumference of untreated part of the same venous segment.
Results:
Maximal shrinkage and minimal number of perforations were achieved using lower or medium power (8 to 12 W) .Circumference of shrunken vein compared to normal venous circumference (100%) was as follows: 50% (power 5W), 45% (power 8W), 40% (power 10W), 45% (power 12W) and 58.6% (power 15W). These differences are statistically significant (p < 0.001). When higher power was used (15W), the perforations and carbonisations were more frequent and total energy was lower but the difference in amount of energy delivered was not significant (p = 0.379).
Conclusions:
Shrinkage of the vein depends on laser power. Based on our experiments, we recommend photocoagulation with lower or medium power (8 to 12 W) and slower pull-back (0.2 to 2 mm/s) to achieve the sufficient energy per centimeter of the vein and the optimal long-term outcome.
Key words:
endovenous laser – shrinkage – laser power – perforations
Sources
1. Weiss, R. A. Comparison of endovenous radiofrequency versus 810 nm diode laser occlusion of large veins in an animal model. Dermatol. Surg., 2002 Jan; 28(1): 56–61.
2. Proebstle, T.M., Lehr, H. A., Kargl, A., Espinola-Klein, C., Rother, W., Bethge, S., Knop, J. Endovenous treatment of the greater saphenous vein with a 940-nm diode laser: thrombotic occlusion after endoluminal thermal damage by laser-generated steam bubbles. J. Vasc. Surg., 2002 Apr; 35(4): 729–736.
3. Proebstle, T. M., Sandhofer, M., Kargl, A., Gul, D., Rother, W., Knop, J., Lehr, H.A. Thermal damage of the inner vein wall during endovenous laser treatment: key role of energy absorption by intravascular blood. Dermatol. Surg., 2002 Jul; 28(7): 596–600.
4. Zimmet, S. E., Min, R. J. Temperature changes in perivenous tissue during endovenous laser treatment in a swine model. J. Vasc. Interv. Radiol., 2003 Jul; 14(7): 911–915.
5. Mordon, S.R., Wassmer, B., Zemmouri, J. Mathematical modeling of endovenous laser treatment (ELT). Biomed. Eng. Online, 2006, Apr 25; 5: 26.
6. Schmedt, C. G., Sroka, R., Steckmeier, S., Meissner, O. A., Babaryka, G., Hunger, K., Ruppert, V., Sadeghi-Azandaryani, M., Steckmeier, B. M. Investigation on Radiofrequency and Laser (980nm) Effects after Endoluminal Treatment of Saphenous Vein Insufficiency in an Ex-vivo Model. Eur. J. Vasc. Endovasc. Surg., 2006 Sep; 32(3): 318–325.
7. Timperman, P. E., Sichlau, M., Ryu, R. K. Greater energy delivery improves treatment success of endovenous laser treatment of incompetent saphenous veins. J. Vasc. Interv. Radiol., 2004 Oct; 15(10): 1061–1063.
8. Proebstle, T. M., Krummenauer, F., Gul, D., Knop, J. Nonocclusion and early reopening of the great saphenous vein after endovenous laser treatment is fluence dependent. Dermatol. Surg., 2004 Feb; 30 (2 Pt 1): 174–178.
9. Timperman, P. E. Prospective evaluation of higher energy great saphenous vein endovenous laser treatment. J. Vasc. Interv. Radiol., 2005 Jun; 16(6): 791–794.
10. Min, R. J., Khilnani, N. M. Endovenous laser ablation of varicose veins. J. Cardiovasc. Surg. (Torino), 2005 Aug; 46(4): 395–405.
11. Chang, C. J., Chua, J. J. Endovenous laser photocoagulation (EVLP) for varicose veins. Lasers Surg. Med., 2002; 31(4): 257–262.
12. Mozes, G., Kalra, M., Carmo, M., Swenson, L., Gloviczki, P. Extension of saphenous thrombus into the femoral vein: a potential complication of new endovenous ablation techniques. J. Vasc. Surg., 2005 Jan; 41(1): 130–135.
13. Gorisch ,W., Boergen, K. P. Heat-induced contraction of blood vessels. Lasers Surg. Med., 1982; 2(1): 1–13.
14. Manfrini, S., Gasbarro, V., Danielsson, G., Norgren, L., Chandler, J.G., Lennox, A.F., Zarka, Z.A., Nicolaides, A.N. Endovenous management of saphenous vein reflux. Endovenous Reflux Management Study Group. J. Vasc. Surg., 2000 Aug; 32(2): 330–342.
15. Zikorus, A. W., Mirizzi, M. S. Evaluation of setpoint temperature and pullback speed on vein adventitial temperature during endovenous radiofrequency energy delivery in an in-vitro model. Vasc. Endovascular. Surg., 2004 Mar-Apr; 38(2): 167–174.
16. Vangsness, C. T. Jr, Mitchell, W. 3rd, Nimni, M., Erlich, M., Saadat, V., Schmotzer, H. Collagen shortening. An experimental approach with heat. Clin. Orthop. Relat. Res., 1997 Apr; (337): 267–271.
17. Moran, K., Anderson, P., Hutcheson, J., Flock, S. Thermally induced shrinkage of joint capsule. Clin. Orthop. Relat. Res., 2000 Dec; (381): 248–255.
18. Hayashi, K., Markel, M. D. Thermal capsulorrhaphy treatment of shoulder instability: basic science. Clin. Orthop. Relat. Res., 2001 Sep; (390): 59–72.
19. Naseef, G. S. 3rd, Foster, T. E., Trauner, K., Solhpour,S., Anderson, R. R., Zarins, B. The thermal properties of bovine joint capsule. The basic science of laser- and radiofrequency-induced capsular shrinkage. Am. J. Sports Med., 1997 Sep-Oct; 25(5): 670–674.
20. Wall, M. S., Deng, X. H., Torzilli, P. A., Doty, S.B., O‘Brien, S. J., Warren, R. F. Thermal modification of collagen. J. Shoulder Elbow Surg., 1999 Jul-Aug; 8(4): 339–344.
21. Osmond, C., Hecht, P., Hayashi, K., Hansen, S., Fanton, G. S., Thabit, G. 3rd, Markel, M. D. Comparative effects of laser and radiofrequency energy on joint capsule. Clin. Orthop. Relat. Res., 2000 Jun; (375): 286–294.
22. Proebstle, T. M., Moehler ,T., Gul, D., Herdemann, S. Endovenous treatment of the great saphenous vein using a 1,320 nm Nd:YAG laser causes fewer side effects than using a 940 nm diode laser. Dermatol. Surg., 2005 Dec; 31(12): 1678–1683.
23. Kim, H. S., Nwankwo, I. J., Hong, K., McElgunn, P. S. Lower energy endovenous laser ablation of the great saphenous vein with 980 nm diode laser in continuous mode. Cardiovasc. Intervent. Radiol., 2006 Jan-Feb; 29(1): 64–69
Labels
Surgery Orthopaedics Trauma surgeryArticle was published in
Perspectives in Surgery
2007 Issue 2
Most read in this issue
- Biliary Ileus – A Missed Out Cause of Intestinal Obstruction
- Appendectomy – Comparison of Results of Laparoscopy versus Open Surgery
- Multiple Lung Metastasectomy for the Poor Differentiated Metastatic Synovial Sarcoma
- Laparoscopic Liver Resection