Occupational exposure to nanoparticles
Authors:
Hurbánková Marta; Hrašková Dominika; Moricová Štefánia
Authors‘ workplace:
Slovenská zdravotnícka univerzita v Bratislave, Fakulta verejného zdravotníctva, Ústav pracovnej zdravotnej služby prednosta doc. MUDr. Štefánia Moricová, PhD., MPH, mim. prof.
Published in:
Pracov. Lék., 66, 2014, No. 2-3, s. 78-84.
Category:
Review article
Overview
The work discusses the latest knowledge about nanoparticles in terms of their characteristics, health effects, professional exposure to nanoparticles, the routes of entry into the body, legislation and preventive measures, analysis of risk as a result of occupational exposure to nanoparticles and classification of nanoparticles according to IARC (International Agency for Research on Cancer, Lyon).
Keywords:
nanoparticles – professional exposure to nanoparticles – legislation and preventive measures – the classification of the selected nanoparticles according to IARC
Sources
1. Allhoff, F., Lin, P., Moore, D. What is Nanotechnology and Why Does It Matter?: From Science to Ethics. Singapour: Wiley, A. J. & Sons, 2009, 304 s., ISBN: 978-1-4051-7545-6.
2. Antonini, J. M. Health effects of welding. Crit. Rev. Toxicol., 2003, 33, s. 61–103.
3. Borm, P. J. A. et al. The potential risk of nanomaterials: a review carried out for ECETOC. Particle and Fibre Toxicology, 2006, 3, 11, s. 1–35.
4. Byrne, J. D., Baugh, J. A. The significance of nanoparticles in particle-induced pulmonary fibrosis. Mcgill J. Med., 2008, 1, s. 43–50, PMCID: PMC 2322933.
5. Donaldson, K., Stone, V., Tran, C., L., Kreyling, W., Borm, P. J. A. Nanotoxicology: a new frontier in particle toxicology relevant to both the workplace and general environment and to consumer safety. Occup. Environ. Med., 2004., vol. 61, s. 727–728.
6. Donaldson, K., Tran, L., Jimenez, L. A., Duffin, R., Newby, D. E., Mills, N., MacNee, W., Stone, V. Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure. Particle and Fibre Toxicology, 2005, 2, 10, 3–23, ISSN: 1743-8977.
7. Duffin, R., Tran, L, Clouter, A., Brown, D. M., MacNee, W., Stone, V., Donaldson, K. The importance of surface area and specific reactivity in the acute pulmonary inflammatory response to particles. Ann. Occup. Hyg., 2002, 46 Suppl,. 1, s. 242–245.
8. European Commission EU. Second Regulatory Review on Nanomaterials. COM., 2012, 572 Final, Brussels, 3. 10. 2012, pp. 18.
9. Fine, J. M., Gordon, T., Chen, L. C., Kinney, P., Falcone, G., Beckett, W. S. Metal fume fever: characterization of clinical and plasma IL-6 responses in controlled human exposures to zinc oxide fume at and below the threshold limit value. J. Occup. Environ. Med., 1997, 39, s. 722–726.
10. Fubini, B., Mollo, L., Giamello, E. Free-radical generation at the solid/liquid interface in iron- containing minerals. Free Radical Research, 1995, 23, s. 593–614.
11. HEI: Diesel exhaust: a critical analysis of emissions, exposure and health effects. A special report of the Insititute’s diesel working group. HEI research report, 1995.
12. Hull, M. J., Abraham, J. L. Aluminum welding fume-induced pneumoconiosis. Hum. Pathol., 2002, 33, s. 819–825, ISSN 1658-3175.
13. Hurbánková, M. Pevné aerosóly a zdravie. In: Šulcová, M., Čižnár, I., Fabiánová, E.: Verejné zdravotníctvo. VEDA, vydavateľstvo – SAV, 2012, s. 372–388, ISBN 978-80-224-1283-4.
14. IARC, 2012. Chemical Agents and Related Occupations. France: International Agency for Research on Cancer, 2012, 567 s., ISSN 1017-1606.
15. IARC, 2013. Agents Classified by the IARC Monographs. International Agency for Research on Cancer. Vol. 1–109. Dostupné na: http://monographs.iarc.fr/ENG/Classification/ [online: 14.01.2014].
16. Kittelson, D. B. Engines and nanoparticles: a Review. J. Aerosol. Sc., 1998, s. 29575–29588.
17. Li, G. J., Zhang, L. L., Lu, L., Wu, P., Zheng, W. Occupational exposure to welding fume among welders: alterations of manganese, iron, zinc, copper, and lead in body fluids and the oxidative stress status. J. Occup. Environ. Med., 2004, 46, s. 241–248.
18. McNeilly, J. D., Heal, M. R., Beverland, I. J., Howe, A., Gibson, M. D., Hibbs, L. R., MacNee,W., Donaldson, K. Soluble transition metals cause the pro-inflammatory effects of welding fumes in vitro. Toxicol. Appl. Pharmacol., 2004, 196, s. 95–107.
19. Morawska, L., Zhang, J. J. Combustion sources of particles. 1. Health relevance and source signatures. Chemosphere, 2002, 49, s. 1045–1058.
20. Naslund, P. E., Andreasson, S., Bergstrom, R., Smith, L., Risberg, B. Effects of exposure to welding fume: an experimental study in sheep. European Respiratory Journal, 1990, 3, s. 800–806.
21. NIOSH, 2005. NIOSH current intelligence bulletin: Evaluation of health hazard and occupational exposure to titanium dioxide. Draft. Available at: Accessed May 3, 2010. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. Dostupné na: http://www.cdc.gov/niosh/review/public/tio2/pdfs/tio2draft.pdf
22. Piers, F., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J. et al. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L. Climate Change: The Physical Science Basis, Cambridge University Press, United Kingdom and New York, NY, USA: Cambridge, 2007, pp. 129–234.
23. Pekkanen, J. et al. Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease: the exposure and risk assessment for fine and ultrafine particles in ambient air (ULTRA) study. Circulation, 2002, 106, s. 933–938.
24. Peters, A., Wichmann, H. E., Tuch, T., Heinrich, J., Heyder. J. Respiratory effects are associated with the number of ultrafine particles. American Journal of Respiratory and Critical Care Medicine, 1997, 155, s. 1376–1383.
25. Reproduced with permission from Toxics Law Reporter. 26 TXLR 826, 07/14/2011. Copyright 2011 by The Bureau of National Affairs, Inc. 800-372-1033, http://www.bna.com.
26. Rice, T. M., Clarke, R. W., Godleski, J. J., Al. M. E., Jiang, N. F., Hauser, R., Paulauskis, J. D. Differential ability of transition metals to induce pulmonary inflammation. Toxicol. Appl. Pharmacol., 2001, 177, s. 46–53.
27. Rupová, M., Skřehot, P. Nanobezpečnost. Výskumný ústav bezpečnosti práce, v. v. i., Jeruzalemská 9, 116 52 Praha 1, XXX. kongres pracovního lékařství s medzinárodní účastí, Praha, 13.–14. 10. 2011.
28. Sferlazza, S. J., Beckett, W. S. The respiratory health of welders. Am. Rev. Respir. Dis., 1991, 143, s. 1134–1148.
29. Sičáková, A. Betón a nanotechnológie. Kamenivo a betón, 2005, roč. VI., s. 7–11.
30. Squadrito, G. L., Cueto, R., Dellinger, B., Pryor, W. A. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radic. Biol. Med., 2001, 31, s. 1132–1138.
31. Sun, J., Zhou, S., Hou, P.,Yang, Y., Weng, J., Li, X., Li, M. Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res. A., 2007, 80, 2, s. 333–341.
32. Taylor, M. D., Roberts, J. R., Leonard, S. S., Shi, X., Antonini, J. M. Effects of welding fumes of differing composition and solubility on free radical production and acute lung injury and inflammation in rats. Toxicol. Sci., 2003, 75, s. 181–191.
33. Tobias, H. J., Beving, D. E., Ziemann, P. J., Sakurai, H., Zuk, M., McMurry, P. H., Zarling, D., Waytulonis, R., Kittelson, D. B. Chemical analysis of diesel engine nanoparticles using a nano-DMA/thermal desorption particle beam mass spectrometer. Environ. Sci. Technol., 2001, 35, s. 2233–2243.
34. Warheit, D. B. et al. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicology Letters, 2007, Vol. 171, 3, s. 99–110, ISSN 0378-4274.
35. Warheit, D. B., Webb, T. R., Reed, K. L., Frerichs, S., Sayes, C. M. Pulmonary toxicity study in rats with three forms of ultrafine – TiO2 particles: differential responses related to surface properties. Toxicology, 2007, 230, s. 90–104.
36. Wiedensohler, A., Wehner, B., Birmili, W. Aerosol number concentrations and size distributions at mountain-rural, urban-influenced rural, and urbanbackground sites in Germany. Journal of Aerosol Medicine, 2002, 15, s. 237–243.
37. Wichmann, H. E. et al. Daily mortality and fine and ultrafine particles in Erfurt, Germany part I: Role of particle number and particle mass. Research Report/Health Effects Institute, Nov. 2000, 98, s. 5–86.
38. Zhang, J. J., Morawska, L. Combustion sources of particles: 2. Emission factors and measurement methods. Chemosphere, 2002, 49, s. 1059–1074.
Labels
Hygiene and epidemiology Hyperbaric medicine Occupational medicineArticle was published in
Occupational Medicine
2014 Issue 2-3
Most read in this issue
- Lateral epicondylitis of humerus in clinical practice of the occupational diseases ward
- Saturation diving – the Hydronaut Project
- Kinesiotherapy in the carpal tunnel syndrome
- Low back pain as an occupational disease