Employment of current results of tissue engineering in the development of skin substitutes
Authors:
Jana Dragúňová; Ján Koller; Valéria Cucorová
Authors‘ workplace:
Klinika popálenín a rekonštrukčnej chirurgie LF UK, Bratislava, Slovenská republika
Published in:
Čas. Lék. čes. 2012; 151: 286-293
Category:
Review Articles
Overview
Substitution of skin, particularly in extensive burns, is one of the key points for patients’ mortality reduction. In addition to the use of allogeneic and autologous skin substitutes, new developments in tissue engineering would enable the use biosynthetic and combined skin substitutes, which could mimic the structure and functions of normal skin. Several such types of substitutes like cultured allogeneic and autologous keratinocytes, allogeneic/autologous composites, acellular matrices, matrices based on biological substances such as collagen/hyaluronic acid, and matrices seeded by different cell types (keratinocytes, dermal fibroblasts, stem cells) already exist. Recent development in skin substitutes research aims gradually to establish a fully functional skin substitute which could mimic skin not only by its structure, but which could be capable to assure also its revascularization, reinnervations, and replacement of skin appendages (hair follicles, sebaceous glands etc.) as well. Creation of such a skin substitute will require collaboration of a wide range of research specialists including molecular biology, material sciences, genetic and tissue engineering, computer sciences, and, of course, clinical specialists in the field of plastic surgery and burn medicine. Recent advances in this field are promising and give hope that in the near future such a fully functional skin substitute would become a reality. This article aims to give information on the available skin substitutes at the present time.
Key words:
tissue engineering, allografts, autografts, amnion, somatic cells, stem cells, biomaterials, skin substitutes.
Sources
1. MacNeil S. Progress and opportunities for tissue – engineered skin. Nature 2007; 445: 874–880.
2. Schevchenko RV, Stuart LJ, James SE. A review of tisse – engineered skin bioconstructs available for skin reconstruction. J. of the Royal Society Interface 2009; 7: 229–258.
3. Piccolo N, Piccolo-Lobo M, Piccolo-Daher M, Cardoso V. Use of frog skin as a temporary biological dressing. Proc. 24th Am Burn Assoc Mtg 1992; 24–39.
4. Sneve H. The treatment of burns and skin grafting. JAMA 1905; 45: 1–8.
5. Bromberg BD, Song Ch, Mohn MP. The use of pig skin as a temporary skin substitute. Plast Rec Surg 1965; 36: 80–90.
6. Switzer WE, Moncrief JA, Mills WJ, Order SE. Lindberg RB. The use of canine heterografts in the therapy of thermal injury. J Trauma 1966; 6: 391–395.
7. Bach FH. Xenotransplantations: problems and prospects. Ann Rev Med 1988; 49: 301–310.
8. Steele DJ, Auchincloss HJ. Xenotransplantation. Ann Rev Med 1995; 46: 345–360.
9. Platt J. New directions for organ transplantation. Nature1998; 392: 11–17.
10. Welin, S. Starting clinical trials of xenotransplantation – reflection on the ethics of the early phase. Journal of Medical Ethics 2000; 26: 231–236.
11. Moserová J, Běhounková E, Vrabec R, Svátek V. Metodika odběru a skladování dero- epidermálních vepřových štěpú. Rozhl Chir 1974; 53(3): 190–194.
12. Moserová J, Houšková E. Kožní ztráty a jejich krytí. Praha: Avicenum 1988.
13. Klein L,Měřička J, Preis J. Xenotransplantace v léčbě popálenin. Vojenské zdravotnícke listy 1989; 58(5/6): 196–198.
14. Koller J, Panáková E, Siska P. The use of banked skin in excisional treatment of burns. In: Boeckx W, Moseová J. (eds): Progress in Burn Injury. Acco Leuven 1990: 94–98.
15. Bach FH. Xenotransplantations: problems and prospects. Ann Rev Med 1988; 49: 301–310.
16. Todaro GJ, Benveniste RE, Lieber MM, Sherr CJ. Characterization of a type C virus released from the porcine cell line PK 15. Virology 1984; 58: 65–74.
17. Patience C, Takeuchi Y, Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nat Med 1997; 3: 282–286.
18. Tristem M, Kabat P, Lieberman L, Linde, S, Karpas A, Hill, F. Characterization of novel murine leukaemia virus– related subgroup within animals. J Virol 1996; 70: 8241–8246.
19. Butler U. Last chance to stop and think on risk s of xenotransplantation. Nature 1988; 391: 320–324.
20. Heneine W, Tibell, A, Switzer WM. No evidence of infection with porcine endogenous retrovirus in recipients porcine islet-cell xenografts. Lancet 1999; 352: 695–701.
21. Pitkin Z, Mullon C. Evidence of absence of porcine endogenous retrovirus (PERV) infection in patients treated with a bioartificial liver support system Artef. Organs 1999; 23: 829–838.
22. Paradis K, Langford G, Long Z. Search for cross – species transmission of porcine endogenous retovirus in patients treated with living pig tissues. Science 1999; 285: 1236–1241.
23. di Nicuolo D, Álessandro A, Andria B, Scognamiglio M, Tammaro A, Mancici A, Cozzolino S, DiFlorio E, Bracco A, calise F, Chamuleau RAFM. Long term absence of porcine endogenous retrovirus infection in chronically immunosuppressed patients after treatment with the cell– based Academic Medical Center bioartificial liver. Xenotransplantation 2010; 17: 31–439.
24. Paradis K, Langford G, Long Z, Heneine W, Sandstrom P, Switzer W, Chapman L, Lockey C, Onion D. The XEN 111 study group and Otto E. Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue Science 1999; 285: 1236–1241.
25. Reverdin JL. Sur la greffe epidermique. CR Acad Sci 1871; 73: 1280–1285.
26. Burke JF, Bondoc CC, Quinby WC. Primary burn excision and immediate grafting: a method of shortening illness. J Trauma 1974; 14: 389–395.
27. Sheridan RL, Tompkins RG. Skin substitute in burns. Burns 1999; 25: 97–103.
28. Alexander JW, MacMillan BG, Law E. Treatment of severe burns with widely meshed skin auto graft and meshed skin allograft overlay. J Trauma 1981; 21: 433–442.
29. Greenleaf G, Cooper ML, Hansbrough JF. Microbial contamination in allografted wound beds in patients with burns. J Burn Care Rehabil 1991; 12(5): 442–446.
30. Kreis RW, Hoeckstra MJ, Mackie DP. Historical appraisal of the use of skin allografts in the treatment of extensive full thickness burns at the Red Cross Hospital Burns Centre, Bewerwijk.The Netherlands. Burns 1992; 18: 19–22.
31. Kreis RW. Surgical techniques in the treatment of full thickness burns. Proefschritt Universiteit van Amsterdam 1993.
32. Brans TA, Hoekstra MJ, Vloemans AFPM, Kreis RW. Long term results of the treatment of scalds in children with glycerol-preserved allografts. Burns 1994; 20(Suppl 1): 114–118.
33. Leicht P, Muchardt O, Jensen M, et al. Allograft vs. exposure in the treatment of scalds – a prospective randomized controlled clinical study. Burns 1989; 19(1): 1–3.
34. Eldad A, Din AE, Weinberg A. Cryopreserved cadaveric allografts for treatment of unexcised partial thickness flame burns: clinical experience with 12 patients. Burns 1997; 23(7–8): 608–614.
35. Koller J. Súčasné možnosti náhrady kože. Habilitačná práca 2004, Lekárska fakulta UK Bratislava 2004.
36. Kealey GP. Disease transmission by means of allograft. Journal of Burn Care & Rehabilitation 1997; 18, č.S/2: 10–11.
37. Sabella N. Use of foetal membrane in skin grafting. Med. Rec. N.Y. 1913; 83: 478.
38. Koller J, Panáková, E. Experience in the use of foetal membranes for the treatment of burns and other skin defects. Advances in tissue banking 1997; vol 1. Ed: Phillips, von Versen, Singapore.
39. Klen R, Skalská H. A comparison of dermoepidermal and chorionamniotic grafts in the treatment of burns. Acta Chir Plast 1976; 18: 225–232.
40. Klen R. Biological principles of skin banking. Pergamon Press Ltd. 1982.
41. Krizek TJ, Koss N, Samburg JL. Amniotic membranes as a temporary wound dressing. Surg Gynecol Obstet 1973; 136: 904–906.
42. Ramakrishnan KM, Jayaraman V. Management of partial-thickness burn wounds by amniotic membranes: a cost–effective treatment in developing countries. Burns 1997; 23(Suppl 1): 33–36.
43. Panáková E, Koller J. Utilisation of foetal membranes in the treatment of burns and other skin defects. In: Phillips GO, Strong DM, von Versen R, Nather A. Advances in Tissue Banking, Vol 1; World Sdientific Publishers Ltd. 1997: 165–182.
44. Azuarra-Blanco A. Amniotic membrane transplantation. Br J Ophtalm 1999; 83: 748–752.
45. John A, Oomen J. Use of amniotic membrane in the dermatology. Indian Journal of Dermatology, Venerology and Leprology 2010; 76(2): 196–197.
46. Azuarra Blanco, A, Pilai CT, Dua HS. Amniotic membrane transplantation for ocular surface reconstruction. Br J Ophtalmol 1998; 83: 399–402.
47. Sangwan VS, Sanghamitra B, Sushma T, Sankaranarayana PM, Murthy R. Amniotic membrane transplantation: a review of current indications in the management of ophtalmic disrders. Current Ophtalmology 2007; 55(4): 251–260.
48. Tsai RJ, Li LM, Chen JK. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 2000; 343: 86–93.
49. Dragúňová J, Koller, J, Nikel M, Peško K. Cultivation of limbal-like stem cells on the amnionc membrane carrier. 13. Congress of EATB 2004; October 13–16, Prague, Czech Republic.
50. Nakamura T, Kinoshita S. Ocular surface reconstruction using cultivated mucosal epithelial stem cells. Cornea 2003; 7: 75–80.
51. De Oliveira P, Melo GB, Gomes JA, Haalalainen EF, Komagome CM, Santos NC, Sousa Lima Pinho AA, Rizza LV. Ultrastructural and growth factor analysis of amniotic membrane preserved by different methods for ocular surgery. Arg Bras Oftalmol 2007; 70(5): 756–762.
52. Grueterich M, Espana EM, Scheffer C, Tseng G. Modulation of keratin and connexin expression in limbal epithelium expanded on denuded amniotic membrane wuth and without a 3T3 fibroblast feeder layer. IOVS 2003; 44: 4230–4236.
53. Chang YJ, Hwang SM, Tseng CP, Cheng FC, Huang SH, Hsen LF, Hsu LU, Tsai MS. Isolation of mesenchymal stem cells with neurogenic potential from mesoderm of the amniotic membrane. Cell Tissues Organs 2010; 192(2): 93–105.
54. Boyce ST, Ham RG. Cultivation, frozen storage and clonal growth of normal human epidermal keratinocytes in serum-free media. J Tissue Cult Methods 1985; 9: 83–93.
55. Rheinwald JG. Green H. Formation of a keratinizing epithelium in culture by a cloned cells line derived from a teratoma. Cell 1975a; 6: 317–330.
56. Rheinwald JC. Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 1975b; 6: 331–344.
57. Rheinwald JC. Serial cultivation of normal human keratinocytes. Methods in Cell Biology 1979; 21: 229–254.
58. Leight IM, Watt FM. Keratinocyte methods. Cambridge University Press 1974.
59. Sandulanche VC, Zhou Z, Sherman A, Dohar JE, Hebda PA. Impact of transplantated fibroblasts on rabbit skin wounds. Arch. Otolaryngol. Head Neck Surg 2003; 129: 345–350.
60. Clark RA, Ghosh K, Tonnensen MG. Tissue engineering for cutaneous wounds. J Invest Dermatol 2007; 127: 1018–1029.
61. Ohyama H, Nishimura F, Meguro M, Takashiba S, Murayama Y, Matsushita S. Counter-antigen presentation: fibroblasts produce cytokines by signalling through HLA classes II molecules without inducing T-cell proliferation. Cytokine 2002; 17: 175–181.
62. Maximow A. Untersuchungen über Blut und Bindegewebe I. Die frühesten Entwicklungsstadien der Blut und Bindegewebszellen beim Säugetierembryo, bis zum Anfang der Blutbilding in der Leber. Arch Mikroskop Anat 1909; 73, 444–561.
63. Salaj T, Blehová A. In vitro kultúry vyšších rastlín. Bratislava: Univerzita Komenského 2006.
64. Blanpain C, Lowry WE, Geoghean A, Polak L, Fuchs EL. Self-renewal, multipotency and the existence of two cell populations within an epithelial stem cell niche. Cell 2004; 118: 635–648.
65. Tumbar T. Epitheial skin stem cells. Methods Enzymol 2006; 419: 73–99.
66. Blanpain C, Horsley V, Fuchs E. Epithelial stem cells: turning over the leaves. Cell 2007; 128: 445–458.
67. Tausche AK. An autologous epidermal equivalent tissue-engineered from follicular outer root sheath keratinocytes is as effective as split-thickness skin autograft in recalcitrant vascular leg ulcers. Wound Repair Regen 2003; 11: 248–252.
68. Lemoli R.M. Stem cell plasticity: time for a reappraisal? Haematologica 2005; 90: 360–381.
69. Caplan AI. Mesenchymal stem cells. J Orthop Res 1991; 9 (5): 641–650.
70. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 2007; 213(2): 341–347.
71. Pittenberg MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marschak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143–147.
72. Uličná M, Vojtaššák J. Biologická charakteristika a potenciál kmeňových buniek. Bratislava: Asklepios 2007; 127–131.
73. Schäffler A, Buchler C. Concise review: adipose tissue-derived stromal cell-basic and clinical implications for novel cell-based therapies. Stem Cells 2007; 25(4): 818–827.
74. Zuk PA, Zhu M, Ashjian P, DeZgarte DA, Huang JI, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13(12): 4279–4295.
75. Romanov YA, Darevskaya AN, Merzlikina NV, Buravkova LB. Mesenchymal stem cells from human bone marrow and adipose tissue: isolation, characterization and differentiation potentialities. Bull Exp Biol Med 2005; 140(1): 138–143.
76. Kubeš M, Hamid Z, Vojtaššák J. Perspektívy využitia kmeňových buniek pupočníkovej krvi. Aktuality súčasného biomedicínskeho výskumu. Bratislava: Asklepios 2007.
77. Mc Guckin C, Forraz N, Baradez MO. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Proliferation 2005; 38: 245–255.
78. Harris DT. Cord blood stem cells: A review of potential neurological applications. Stem Cells Rev 2008; 4: 269–274.
79. Kogler G, Sensken S, Wernet P. Comparative generation and characterisation of pluripotent unrestricted somatic stem cells with mesenchymal stem cells from human cord blood. Experimental Hematology 2006; 34(11): 1589–1595.
80. Ko K, Tapia N, Wu G, Kim JB, Araúzo-Bravo MJ, Sasse P, Glaser T, Ruau D, Han DW, Greber B, Hausdorfer K, Sebastiano V, Stehling M, Fleischman BK, Brustle O, Zenke M, Scholer HR. Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell 2009; 5: 87–96.
81. Ko K, Reinhardt P, Tapia N, Schneider-Kramann R, Araúzo-Bravo MJ, Wook Han D, Greber B, Kim J, Kleisch S, Zenke M, Scholer HR. Evaluation the potential of putative pluripotent cells derived from human testis. Stem Cells 2011; 29: akceptovaný, pripravený do tlače.
82. Ferguson MW, O’Kane S. Scar-free healing: from embryonic mechanismus to adult therapeutic intervention. Phil Trans R Soc Lond B 2004; 359: 839–850.
83. Bakoš D. Anorganické, kompozitné a polymérne biomateriály pre tkanivov inžinierstvo. Chem Listy 2010; 104: 498–500.
84. Burdick JA, Mauck RL. Biomaterials for Tissue Engineering Applications: A review of the past and future. 2010 1st eidtion SpringerVerlag.
85. Dieckmann Ch, Renner R, Milkova L, Simon JC. Regenerative medicine in dermatology: biomaterials, tissue engineering, stem cells, gene transfer and beyond. Experimental Dermatology 2010; 19: 697–706.
86. Drobík E, Lukáš R. Use of Synkryt – prevention of epidermal loss and protection during reepithelialization in partial dermal burns. Rozhl Chir 1985; 64(2): 152–155.
87. Schwarze H, Kuntscher M, Uhlig C. Suprathel, a new skin substitute in the management of donor siteof split-thickness skin grafts: results of a clinical study. Burns 2007; 33: 850–854.
88. Yannas IV, Burke JF. Design of an artificial skin I: basic design principles. J Biomed Mater Res 1980; 14: 65–81.
89. Yannas IV, Burke JF. Design of an artificial skinI II. Control of chemical composition. J Biomed. Mater Res 1980; 14: 107–131.
90. Burke JF, Yannas IV, Qiumby WC. Succesfull use of a physioogically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 1981; 194: 413–428.
91. Koller J, Šimko Š, Grasse P, Sopko K. Predbežné skúsenosti s novými typmi dočasných syntetických kožných krytov. Prednáška. Celoštátna vedecká konferencia plastickej chirurgie, Smolenice 1985; 22–24.
92. Wright KA. Nadire KB, Busto P, Tubo R, McPherson JM. Wentworth BM. Alternative delivery of keratinocytes using a polyurethane membrane and the implications for use in the treatment of full-thickness burn injury. Burns 1998; 24: 7–17.
93. Lam PK, Chan ES, To EW, Lau CH, Yen SC, King WW. Development and evaluation of a new composite Laserskin graft. J Trauma 1999; 47: 918–922.
94. Vanscheid W, Ukat A, Horak V. Treatment of recalcitrant venous leg ulcers with autologous keratinocytes in fibrin sealant a multinational randomised controlled clinical trial. Wound Repair Regen 2007; 15: 308–315.
95. Hartmann A, Quist J, Hamm H, Brocker E. Friedl P. Transplantation of autologous keratinocte suspension in fibrin matrix to chronic venous leg ulcers: improved long-term healing after removal of the fibrin carrier. Dermatol Surg 2008; 34: 922–929.
96. Marston WA. Dermagraft, a bioengineered human dermal equivalent for the treatment of chronic non–healing diabetic foot ulcers. Expert Rev Med Devices 2004; 1: 21–31.
97. Xiao YL, Riesle J, Van Blitterswijk CA. Static and dynamic fibroblasts seeding and cultivation in porous PEO/PBT scaffolds. J Mater Sci Mater Med 1999; 10: 773–777.
98. El Ghalbzouri A, Lamme EN, van Blitterswijk C, Koopman J, Ponec M. The use of PEGT/PBT as a dermalscaffold for tisue engineering. Biomaterials 2004; 25: 2987–2996.
99. Eaglestein WH. Acute excisional wounds treated with a tissue-engineered skin (Apligraf). Dermacol Surg 1999; 25: 195–201.
100. Griffits M, Ojeh N, Livingstone R, Price R, Navsaria H. Survival of Apligraf in acute human wounds. Tissue Eng 2004; 10: 1180–1195.
101. Waymack P, Duff RG, Sabolinski M. The effect of a tissue engineered bilayer living skin analog, over meshed split–thickness autografts on the healing of excised burn wounds. The Apligraft Burn Study Group Burns 2000; 26: 609–619.
102. Hayes DW, Webb GE, Mandracchia VJ, John KJ. Full-thickness burn of the foot: succesfull treatment with Apligraf. A case report. Clin Pediatr Med Surg 2001; 18: 179–188.
103. Still J, Glatt P,Silverstein P, Griswold J, Mozingho D. The use of a collagen sponge/ living cell composite material to treat donor sites in burn patients. Burns 2003; 29: 837–841.
104. MacNeil S. Progress and oportunities for tissue-engineered skin. Nature 2007; 445: 874–880.
105. Macri L, Silverstein D, Clark RA. Growth factor binding to the pericellular matrix and its importance in tissue engineering. Adv Drug Deliv Res 2007; 59: 1366–1381.
106. Davidson JM. First-class delivery: getting growth factors to their destination. J Invest Dermatol 2008; 128: 1360–1362.
107. Supp DM, Wilson-Landy K, Boyce ST. Human dermal microvascular endothelial cells form vascular analogs in cultured skin substitutes after grafting to athymic mice. FASEB 2002; 16: 897–804.
108. Tonello C, Vindigni V, Zavan B, Abatangelo S, Abatangelo G, Brun P, Cortivo R. In vitro reconstruction of an endothelialized skin substitute provided with a microcapillary network using biopolymer scaffold. FASEB 2005; 19: 1546–1560.
Labels
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management Dental HygienistArticle was published in
Journal of Czech Physicians
Most read in this issue
- Effect of non-pharmacological methods for alleviation of pain in newborns
- Employment of current results of tissue engineering in the development of skin substitutes
- Public Health is an important tool of health care
- The relationship between sleep and obesity: current perspective