HOX genes and the limb development in the clinical praxis and in the experiment
Authors:
Pavel Šnajdr 1; Miloš Grim 1; František Liška 2
Authors‘ workplace:
Univerzita Karlova v Praze, 1. lékařská fakulta, Anatomický ústav
1; Univerzita Karlova v Praze, 1. lékařská fakulta a VFN, Ústav biologie a lékařské genetiky
2
Published in:
Čas. Lék. čes. 2010; 149: 4-9
Category:
Review Article
Overview
In human, congenital malformations of the limbs are ranked among the most prevalent of all congenital birth defects. Substantial portion of these defects has genetic origin. Increasing knowledge about the particular mutations responsible for limb malformations in human results in the increasing availability of DNA diagnostic procedures for confirmation of clinical diagnosis and family counselling. Increasing understanding of the underlying developmental processes revealed by studying limb defects both in human and animal models may offer better therapeutic options in the future.
This review concentrates on the role of Hox genes in limb development. Man, as well as other mammals, has 39 HOX genes, divided into 4 complexes (clusters). HOX genes play a major role in body plan layout and development of many organ systems. Experimental data show that during the limb development, HOX genes influence patterning along the proximodistal and anteroposterior (thumb-little finger) axis of the limb bud. In human, limb malformation was described in patients with mutations in HOXA11, HOXA13, HOXD10, and HOXD13 genes. Most frequent among these malformations are hand-foot-genital syndrome caused by HOXA13 gene mutation, and synpolydactyly caused by HOXD13 mutation. Severity of the phenotype manifestation of these diseases is variable, and depends on the particular mutation type, where point mutations, polyalanine expansions and deletions can take part.
Key words:
HOX, congenital birth defect, limb development, hand-foot-genital syndrome, synpolydactyly.
Sources
1. Národní registr vrozených vad České republiky – ÚZIS ČR, http://www.vrozene-vady.cz/vrozene-vady/kvartaly/KVART_ 2008_4.pdf
2. Kozin SH. Upper-extremity congenital anomalies. J Bone Joint Surg Am 2003; 85-A: 1564–1576.
3. Sedmera D, Novotna B, Bila V, et al. The role of cell death in limb development of rats manifesting Lx allele on different genetic backgrounds. Eur J Morphol 1998; 36: 173–181.
4. Hinrichsen KV, Jacob HJ, Jacob M, et al. Principles of ontogenesis of leg and foot in man. Ann Anat 1994; 176: 121–130.
5. Franz T, Kothary R, Surani MA, et al. The Splotch mutation interferes with muscle development in the limbs. Anat Embryol (Berl) 1993; 187: 153–160.
6. Brand-Saberi B, Seifert R, Grim M, et al. Blood vessel formation in the avian limb bud involves angioblastic and angiotrophic growth. Dev Dyn 1995; 202: 181–194.
7. Szeder V, Grim M, Halata Z, et al. Neural crest origin of mammalian Merkel cells. Dev Biol 2003; 253: 258–263.
8. Grier DG, Thompson A, Kwasniewska A, et al. The pathophysiology of HOX genes and their role in cancer. J Pathol 2005; 205: 154–171.
9. Lewis EB. A gene complex controlling segmentation in Drosophila. Nature 1978; 276: 565–570.
10. Soshnikova N, Duboule D. Epigenetic regulation of HOX gene activation: the waltz of methyls. Bioessays 2008; 30: 199–202.
11. Deschamps J. Ancestral and recently recruited global control of the HOX genes in development. Curr Opin Genet Dev 2007; 17: 422–427.
12. Tarchini B, Duboule D. Control of HOXd genes‘ collinearity during early limb development. Dev Cell 2006; 10: 93–103.
13. Yekta S, Tabin CJ, Bartel DP. MicroRNAs in the HOX network: an apparent link to posterior prevalence. Nat Rev Genet 2008; 9: 789–796.
14. Apiou F, Flagiello D, Cillo C, et al. Fine mapping of human HOX gene clusters. Cytogenet Cell Genet 1996; 73: 114–115.
15. Horan GS, Ramirez-Solis R, Featherstone MS, et al. Compound mutants for the paralogous hoxa-4, hoxb-4, and hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed. Genes Dev 1995; 9: 1667–1677.
16. Wellik DM. HOX patterning of the vertebrate axial skeleton. Dev Dyn 2007; 236: 2454–2463.
17. Zakany J, Duboule D. The role of HOX genes during vertebrate limb development. Curr Opin Genet Dev 2007; 17: 359–366.
18. Barna M, Hawe N, Niswander L, et al. Plzf regulates limb and axial skeletal patterning. Nat Genet 2000; 25: 166–172.
19. Liska F, Snajdr P, Sedova L, et al. Deletion of a conserved noncoding sequence in Plzf intron leads to Plzf down-regulation in limb bud and polydactyly in the rat. Dev Dyn 2009; 238: 673–684.
20. Kren V. Genetics of the polydactyly-luxate syndrome in the Norway rat, Rattus norvegicus. Acta Univ Carol Med Monogr 1975; 1–103.
21. Thompson AA, Nguyen LT. Amegakaryocytic thrombocytopenia and radio-ulnar synostosis are associated with HOXA11 mutation. Nat Genet 2000; 26: 397–398.
22. Mortlock DP, Innis JW. Mutation of HOXA13 in hand-foot-genital syndrome. Nat Genet 1997; 15: 179–180.
23. Goodman FR, Bacchelli C, Brady AF, et al. Novel HOXA13 mutations and the phenotypic spectrum of hand-foot-genital syndrome. Am J Hum Genet 2000; 67: 197–202.
24. Innis JW, Goodman FR, Bacchelli C, et al. A HOXA13 allele with a missense mutation in the homeobox and a dinucleotide deletion in the promoter underlies Guttmacher syndrome. Hum Mutat 2002; 19: 573–574.
25. Shrimpton AE, Levinsohn EM, Yozawitz JM, et al. A HOX gene mutation in a family with isolated congenital vertical talus and Charcot-Marie-Tooth disease. Am J Hum Genet 2004; 75: 92–96.
26. Goodman FR, Mundlos S, Muragaki Y, et al. Synpolydactyly phenotypes correlate with size of expansions in HOXD13 polyalanine tract. Proc Natl Acad Sci U S A 1997; 94: 7458–7463.
27. Amiel J, Trochet D, Clement-Ziza M, et al. Polyalanine expansions in human. Hum Mol Genet 2004; 13 (Spec No 2): R235–243.
28. Utsch B, McCabe CD, Galbraith K, et al. Molecular characterization of HOXA13 polyalanine expansion proteins in hand-foot-genital syndrome. Am J Med Genet A 2007; 143A: 3161–3168.
29. Zakany J, Duboule D. Synpolydactyly in mice with a targeted deficiency in the HOXD complex. Nature 1996; 384: 69–71.
30. Goodman FR, Majewski F, Collins AL, et al. A 117-kb microdeletion removing HOXD9-HOXD13 and EVX2 causes synpolydactyly. Am J Hum Genet 2002; 70: 547–555.
31. Johnson D, Kan SH, Oldridge M, et al. Missense mutations in the homeodomain of HOXD13 are associated with brachydactyly types D and E. Am J Hum Genet 2003; 72: 984–997.
32. Zhao X, Sun M, Zhao J, et al. Mutations in HOXD13 underlie syndactyly type V and a novel brachydactyly-syndactyly syndrome. Am J Hum Genet 2007; 80: 361–371.
33. Nakano K, Sakai N, Yamazaki Y, et al. Novel mutations of the HOXD13 gene in hand and foot malformations. Int Surg 2007; 92: 287–295.
34. Chomiak J. Vrozené vady končetin a systémové vady skeletu. In: P. Dungl. Ortopedie. Praha: Grada 2005; 245–314.
35. Smrčka V. Vrozené a získané vady horní končetiny. In: J. Měšťák. Úvod do plastické chirurgie. Praha: Karolinum 2005; 66–70.
Labels
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management Dental HygienistArticle was published in
Journal of Czech Physicians
Most read in this issue
- Male fertility and cancer treatment
- Education in schizophrenia: How patients and their relatives assess the relapse prevention programme PREDUKA
- Assessment of health state and working capacity of people suffering from mental disorders and behaviour disorders
- HOX genes and the limb development in the clinical praxis and in the experiment