#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Interference and Molecular Pathology of Selected Diseases


Authors: J. Lochmanová;  M. Bartoš
Authors‘ workplace: Ústav přírodních léčiv, Farmaceutická fakulta, Veterinární a farmaceutická univerzita, Brno
Published in: Čas. Lék. čes. 2008; 147: 607-615
Category: Review Article

Overview

Since many people all around the world are suffering from genetic disorders, modern therapeutic approaches are focused on the search of new pharmaceutical products. These products will be able to act on the gene level, more accurately on the nucleotide sequences themselves. RNA interference (RNAi) is an evolutionary conserved process that is caused by double stranded RNA (dsRNA). MicroRNA (miRNA) and small interfering RNA (siRNA) are the most important dsRNAs, which have been identified so far. Short (19-25bp) non-coding dsRNAs are responsible for regulation of cellular development, heterochromatin formation and genomic stability in eukaryotes. Most importantly they are able to silence cognate genes. Therefore, they can provide new insights into the gene function and pathway analysis. Furthermore, they are believed to be new potential targets for diagnosis and therapeutics, especially for the treatment of genetic disorders, which can be caused by nucleotides insertions, deletions and translocations.

Key words:
RNAi, miRNA, siRNA, genetic disorders.


Sources

1. Lee, R. C., Feinbaum, R. L., Ambros, V.: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75, s. 843–854.

2. Amaral, P. P., Dinger, M. E., Mercer, T. R., Mattick, J. S.: The Eukaryotic Genome as an RNA Machine. Science, 2008, 319, s. 1787–1789.

3. Cogoni, C., Macino, G.: Post-transcriptional gene silencing across kingdoms. Curr. Opi. Genet. Dev., 2000, 10, s. 638–643.

4. Štruncová, S., Borská, R., Kusenda, B. et al.: RNA interference – účinný nástroj regulace genové exprese. Biologické listy, 2005, 70, s. 231–247.

5. Napoli, C. L., Jorgensen, R.: Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell, 1990, 2, s. 279–289.

6. Fire, A., Xu, S. Q., Montgomery, M. K. et al.: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391, s. 806–811.

7. Jones, S. G., Grocock, R. J., van Dongen, S. et al.: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research, 2006, 34, s. 140–144.

8. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., Tuschl, T.: Identification of Novel Genes Coding for Small Expressed RNAs. Science, 2001, 294, s. 853–858.

9. Jones, S. G.: The microRNA Registry. Nucleic Acids Research, 2004, 32, s. 109–111.

10. Lim, L. P., Glasner, M. E., Yekta, S. et al.: Vertebrate MicroRNA Genes. Science, 2003, 299, s. 1540.

11. Novina, C. D., Sharp, P. A.: The RNAi revolution. Nature, 2004, 430, s. 161–164.

12. Bernstein E., Caudy A., Hammond S., Hannon G.: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409, s. 363–366.

13. Nelson, P., Kiriakidou, M., Sharma, A. et al.: The microRNA world: Small is mighty. Trends Biochem. Sci., 2003, 28, s. 534–540.

14. Hammond, S. M., Bernstein, E., Beach, D., Hannon, G. J.: An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 2000, 404, s. 293–296.

15. Huan Gong, Chang-Mei Liu, De-Pei Liu, Chih-Chuan Liang: The role of small RNAs in human diseases: Potential troublemaker and therapeutic tools. Medicinal research reviews, 2005, 25, s. 361–381.

16. Hannon, G. J.: RNA interference. Nature, 2002, 418, s. 244–251.

17. Agrawal, N., Dasaradhi, P. V. N., Mohmmed, A. et al.: RNA Interference: Biology, Mechanism, and Applications. Microbiol Mol Biol Rev, 2003, 67, s. 657–685.

18. Ambros, V.: The functions of animal microRNAs. Nature, 2004, 431, s. 350–355.

19. Sontheimer, E. J., Carthew, R. W.: Silence from within: Endogenous siRNAs and miRNAs. Cell, 2005, 122, s. 9–12.

20. Lewis, B. P., Burge, C. B., Bartel, D. P.: Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. Cell, 2005, 120, s. 15–20.

21. Sholmai, A., Shaul, Y.: Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology, 2003, 37, s. 764–770.

22. Jiang, M., Milner, J.: Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treatment with siRNA: A primer of RNA interference. Oncogene, 2002, 21, s. 6041–6048.

23. Randall, G., Grakoui, A., Rice, C. M.: Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc. Natl. Acad. Sci. USA, 2003, 100, s. 235–240.

24. Ge, Q., McManus, M. T., Nguyen, T. et al.: RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. USA, 2003, 100, s. 2718–2723.

25. Tompkins, S. M., Lo, Ch. Y., Tumpey, T. M., Epstein, S. L.: Protection against lethal influenza virus challenge by RNA interference in vivo. Proc. Natl. Acad. Sci. USA, 2004, 101, s. 8682–8686.

26. Wang, Z., Ren, L., Zhao, X. et al.: Inhibition of Severe Acute Respiratory Syndrome Virus Replication by Small Interfering RNAs in Mammalian Cells. Journal of Virology, 2004, 78, s. 7523–7527.

27. Novina, C, D., Murray, M. F., Dykxhoorn, D. M. et al.: siRNA-directed inhibition of HIV-1 infection. Nature Medicine, 2002, 8, s. 681–686.

28. Qin, X. F., An, D. S., Chen, I. S. Y., Baltimore, D.: Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc. Natl. Acad. Sci. USA, 2003, 100, s. 183–188.

29. Stallwood, Y., Briend, E., Ray, K. M. et al.: Small Interfering RNA-Mediated Knockdown of Notch Ligands in Primary CD4+ T Cells and Dendritic Cells Enhances Cytokine Production. The Journal of Immunology, 2006, 177, s. 885–895.

30. Wilda, M., Fuchs, U., Wössmann, W., Borkhardt, A.: Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene, 2002, 21, s. 5716–5724.

31. Scherr, M., Battmer, K., Winkler, T. et al.: Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood, 2003, 101, s. 1566–1569.

32. Brummelkamp, T. R., Bernards, R., Agami, R.: Stable suppression of tumorgenicity by virus-mediated RNA interference. Cancer Cell, 2002, 2, s. 243–247.

33. Cioca, D. P., Aoki, Y., Kiyosawa, K: RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. The Cancer Gene, 2003, 10, s. 125–133.

34. Spänkuch, B., Matthess, Y., Knecht, R. et al.: Cancer Inhibition in Nude Mice After Systemic Application of U6 Promoter-Driven Short Hairpin RNAs Against PLK1. Journal of the National Cancer Institute, 2004, 96, s. 862–872.

35. Pulukuri, S. M. K., Gondi, Ch. S., Lakka, S. S. et al.: RNA Interference-directed Knockdown of Urokinase Plasminogen Activator and Urokinase Plasminogen Activator Receptor Inhibits Prostate Cancer Cell Invasion, Survival, and Tumorigenicity in Vivo. J. Biol. Chem., 2005, 280, s. 36529–36540.

36. Salvi, A., Arici, B., Alghisi, A. et al.: Small interfering RNA urokinase silencing inhibits invasion and migration of human hepatocellular carcinoma cells. Mol. Cancer Ther., 2004, 3, s. 671–678.

37. Lipscomb, E. A., Dugan, A. S., Rabinovitz, I., Mercurio, A. M.: Use of RNA interference to inhibit integrin (α6ß4)-mediated invasion and migration of breast carcinoma cells. Clinical and Experimental Metastasis, 2003, 20, s. 569–576.

38. Holash, J., Davis, S., Papadopoulos, N. et al.: VEGF-Trap: A VEGF blocker with potent antitumor effects. Proc. Natl. Acad. Sci. USA, 2002, 99, s. 11393–11398.

39. Perkel, J. M.: Therapeutic RNAi: Delivering the Future? Life Science Technologies, 2007, s. 829–832.

40. Nieth, C., Priebsch, A., Stege, A., Lage, H.: Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Letters, 2003, 545, s. 144–150.

41. Cohen, F. E., Bieschke, J., Perciavalle, R. M. et al.: Opposing Activities Protect Against Age-Onset Proteotoxicity. Science, 2006, 313, s. 1604–1610.

42. Cohen, F. E., Kelly, J. W.: Review article Therapeutic approaches to protein-misfolding diseases. Nature, 2003, 426, s. 905–909.

43. Balch, W. E., Morimoto, R. I., Dillin, A., Kelly, J. W.: Adapting Proteostasis for Disease Intervention. Science, 2008, 319, s. 916–919.

44. Xia, H., Mao, Q., Eliason, S. L. et al.: RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nature Medicine, 2004, 10, s. 816–820.

45. Miller, V. M., Xia, H., Marrs, G. L. et al.: Allele-specific silencing of dominant disease genes. Proc. Natl. Acad. Sci. USA, 2003, 10, s. 2718–2723.

46. Caplen, N. J., Taylor, J. P., Statham, V. S. et al.: Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference. Hum. Mol. Gen., 2002, 11, s. 175–184.

47. Burkhardt, B. R., Lyle, R., Keping, Q. et al.: Efficient delivery of siRNA into cytokine-stimulated insulinoma cells silences Fas expression and inhibits Fas-mediated apoptosis. FEBS Letters, 2006, 580, s. 553–560.

48. Poy, M. N., Spranger, M., Stoffel, M.: microRNAs and the regulation of glucose and lipid metabolism. Diabetes, Obesity and Metabolism, 2007, 9, s. 67–73.

49. Gómez-Valadés, A. G., Vidal-Alabró, A., Molas, M. et al.: Overcoming Diabetes-Induced Hyperglycemia through Inhibition of Hepatic Phosphoenolpyruvate Carboxykinase (GTP) with RNAi. Molecular Therapy, 2006, 13, s. 401–410.

50. Koo, S.-H., Satoh, H., Herzig, S. et al.: PGC-1 promotes insulin resistance in liver through PPAR dependent induction of TRB-3. Nature Medicine, 2004, 10, s. 530–534.

51. Taniguchi, C. M., Ueki, K., Kahn, C. R.: Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. The Journal of Clinical Investigation, 2005, 115, s. 718–727.

52. Xu, J., Li, L., Hong, J., Huang, W.: Effects of small interference RNA against PTP1B and TCPTP on insulin signaling pathway in mouse liver: Evidence for non-synergetic cooperation. Cell Biology International, 2007, 31, s. 88–91.

53. Noh, H. J., Kim, H. C., Lee, S. S. et al.: The inhibitory effect of siRNAs on the high glucose-induced overexpression of TGF-beta1 in mesangial cells. J. Korean Med. Sci., 2006, 21, s. 430–435.

54. Kato, M., Zhang, J., Wang, M. et al.: MicroRNA-192 in diabetic kidney glomeruli and its function in TGF – induced collagen expression via inhibition of E-box repressors. Proc. Natl. Acad. Sci. USA, 2007, 104, s. 3432–3437.

55. Caudy, A. A., Myers, M. P., Hannon, G. J., Hammond, S. M.: Fragile X-Related protein and VIG associate with the RNA interference machinery. Genes & Dev., 2002, 16, s. 2491–2496.

56. Ishizuka, A., Siomi, M. C., Siomi, H.: A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes & Dev., 2002, 16, s. 2497–2508.

57. Kim, J., Inoue, K., Ishii, J. et al.: A MicroRNA Feedback Circuit in Midbrain Dopamine Neurons. Science, 2007, 317, s. 1220–1224.

58. Mourelatos, Z., Dostie, J., Paushkin, S. et al.: miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes & Dev., 2002, 16, s. 720–728.

59. Hutvágner, G., Zamore, P.D.: A microRNA in a multiple turnover RNAi enzyme complex. Science, 2002, 297, s. 2056–2060.

60. Dostie, J., Mourelatos, Z., Yang, M., Sharma, A., Dreyfuss, G.: Numerous microRNPs in neuronal cells containing novel microRNAs. RNA, 2003, 9, s. 180–186.

61. Poy, M. N., Spranger, M., Stoffel, M.: microRNAs and the regulation of glucose and lipid metabolism. Diabetes, Obesity and Metabolism, 2007, 9, s. 67–73.

62. Poy, M. N., Eliasson, L., Krutzfeld, J. et al.: A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 2004, 432, s. 226–230.

63. Calin, G. A., Sevignani, C., Dumitru, C. D. et al.: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA, 2004, 101, s. 2999–3004.

64. McManus, M. T.: MicroRNAs and Cancer, Seminars in Cancer Biology, 2003, 13, s. 253–258.

65. Carmell, M A., Xuan, Z., Zhang, M. Q., Hannon, G. J.: The Argonaute family: Tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes & Dev., 2002, 16, s. 2733–2742.

66. Mayr, Ch., Hemann, M. T., Bartel, D. P.: Disrupting the Pairing Between let-7 and Hmga2 Enhances Oncogenic Transformation. Science, 2007, 315, s. 1576–1579.

67. Wei Lv, Chao Zhang, Jia Hao: RNAi technology: A Revolutionary tool for the Colorectal cancer therapeutics. World J. Gastroenterol., 2006, 12, s. 4636–4639.

68. Metzler, M., Wilda, M., Busch, K. et al.: High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes, Chromosomes and Cancer, 2003, 39, 167–169.

69. Calin, G. A., Dumitru, C. D., Shimizu, M. et al.: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA, 2002, 99, s. 15524–15529.

70. Michael, M. Z., O‘Connor, S. M., Pellekaan, N. G. H. et al.: Reduced Accumulation of Specific MicroRNAs in Colorectal Neoplasia. Molecular Cancer Research, 2003, 1, s. 882–889.

71. Hong, M., Murai, Y., Kutsuna, T. et al.: Suppression of Epstein-Barr nuclear antigen 1 (EBNA1) by RNA interference inhibits proliferation of EBV-positive Burkitt‘s lymphoma cells. J Cancer Res Clin Oncol, 2006, 132, s. 1–8.

72. Krivtsov, A. V., Twomey, D., Feng, Z. et al.: Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature, 2006, 442, s. 818–822.

73. Pui, C. H., Behm, F. G., Downing, J. R. et al.: 11q23/MLL rearrangement confers a poor prognosis in infants with acute lymphoblastic leukemia. Journal of Clinical Oncology, 1994, 12, s. 909–915.

74. So, Ch. W., Karsunky, H., Passegué, E. et al.: MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell, 2003, 3, s. 161–171.

75. Zeisig, B. B., García-Cuéllar, M. P., Winkler, T. H., Slany, R. K.: The Oncoprotein MLL-ENL disturbs hematopoietic lineage determination and transforms a biphenotypic lymphoid/myeloid cell. Oncogene, 2003, 22, s. 1629–1637.

76. Cozzio, A., Passegué, E., Ayton, P. M. et al.: Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes & Dev., 2003, 17, s. 3029–3035.

77. Ober, C., Cox, N. J., Abney, M. et al.: Genome-wide search for asthma susceptibility loci in a founder population. Human Molecular Genetics, 1998, 7, s. 1393–1398.

78. Blumenthal, M. N., Langefeld, C. D., Barnes, K. C. et al.: A genome-wide search for quantitative trait loci contributing to variation in seasonal pollen reactivity. The Journal of Allergy and Clinical Immunology, 2006, 117, s. 79–85.

79. Bu, L. M., Bradley, M., Soderhall, C. et al.: Susceptibility loci for atopic dermatitis on chromosome 21 in a Swedish population. Allergy, 2006, 61, s. 617–621.

80. Brantl, S.: Antisense-RNA regulation and RNA interference. Biochim. Biophys. Acta, 2002, 1575, s. 15–25.

81. Kawakami, S., Hashida, M.: Targeted Delivery Systems of Small Interfering RNA by Systemic Administration. Drug Metabolism and Pharmacokinetics, 2007, 22, s. 142–151.

82. Lieberman, J., Song, E., Lee, S. K., Shankar, P.: Interfering with disease: opportunities and roadblocks to harnessing RNA interference. Trends Mol. Med., 2003, 9, s. 397–403.

83. Uprichard, S. L.: The therapeutic potential of RNA interference. FEBS Letters, 2005, 579, s. 5996–6007.

Labels
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management Dental Hygienist
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#