[Na+] – [Cl-] difference significantly contributes to acidemia in patients with liver cirrhosis
Authors:
Jana Lůžková 1; Bořivoj Lůžek 2; Karel Matoušovic 3,4
Authors‘ workplace:
2. LF UK, Praha
1; I. interní oddělení nemocnice Most, o. z., Krajská zdravotní, a. s.
2; Interní klinika 2. LF UK a FN v Motole, Praha
3; Oddělení transplantací a tkáňové banky FN v Motole, Praha
4
Published in:
Vnitř Lék 2016; 62(Suppl 6): 14-20
Category:
Original Contributions
Overview
Aim:
To evaluate the role of strong ion difference (SID) in acid-base disorders in patients with liver disease.
Patients and methods:
We evaluated the acid-base status in 11 patients with liver cirrhosis both by traditional and quantitative Stewart-Fencl methods.
Results:
Nine of eleven patients had pH within the norm, 2/11 had pH above 7.44. One patient had respiratory alkalosis, the second had a combined respiratory alkalemia and metabolic acidemia. The anion gap was increased only in one patient, but after correction for serum albumin concentration, it was above the norm in 10/11 patients. pCO2 was below the normal limit in 5/11 patients. The Stewart-Fencl evaluation revealed decreased SID in 11/11 patients. Both SID and the difference in [Na+] – [Cl-] closely correlated with [HCO3-] (r = 0.9264 and r = 0.7272, respectively, P < 0.01). The not routinely assayed ions [UA-] were increased in 9/11 patients.
Conclusion:
The acid-base status in patients with decompensated liver cirrhosis was characterized by a tendency to respiratory alkalemia and metabolic acidemia. Apart from an increase of [UA-], the difference in [Na+] – [Cl-] contributed significantly to acidemia. Thus, this simple parameter aids in determining the causes of acid-base disturbance and influences the treatment strategy.
Key words:
acid-base balance – liver cirrhosis – sodium-chloride difference – Stewart-Fencl method
Sources
1. Bernardi M, Predieri S. Disturbances of acid-base balance in cirrhosis: a neglected issue warranting futher insights. Liver Int 2005; 25(3): 463–466.
2. Wagner CA. Effect of mineralocorticoids on acid-base balance. Nephron Physiol 2014; 128(1–2): 26–34. Dostupné z DOI: <http://dx.doi.org/10.1159/000368266>.
3. Lee Hamm L, Hering-Smith KS, Nakhoul NL. Acid-base and potassium homeostasis. Semin Nephrol 2013; 33(3): 257–264. Dostupné z DOI: <http://dx.doi.org/10.1016/j.semnephrol.2013.04.006>.
4. Wilkes P. Hypoproteinemia, strong ion difference and acid-base status in critically ill patients. J Appl Physiol 1998; 84(5): 1740–1748.
5. Häussinger D. Liver and kidney in acid-base rtegulation. Nephrol Dial Transpl 1995; 10(9): 1536.
6. Häussinger D, Steeb R, Gerok W. Ammonium and bicarbonate homeostasis in chronic liver disease. Klin Wochenschr 1990; 68(3): 175–182.
7. Häussinger D, Gerok W. Hepatic urea synthesis and pH regulation. Role of CO2, HCO3-, pH and the activity of carbonic anhydrase. Eur J Biochem 1985; 152(2): 381–386.
8. Shangraw RE, Jahoor F. Effect of liver disease and transplantation on urea synthesis in humans: relationship to acid-base status. Am J Physiol 1999; 276(Pt 1): G1145-G1152.
9. Laffi G, La Villa G, Carloni V et al. Loop diuretic therapy in liver cirrhosis with ascites. J Cardiovasc Pharmacol 1993; 22(Suppl 3): S51-S58.
10. McAuliffe J, Lind LJ, Fencl V et al. Hypoproteinemic alkalosis. Am J Med 1986; 81(1): 86–90.
11. Kinouchi T Fluid, electrolyte, and acid-base disorders in liver cirrhosis. Nihon Rinsho 1994; 52(1): 124–131.
12. Henriksen JH, Bendtsen F, Møller S. Acid-base disturbance in patients with cirrhosis: relation to hemodynamic dysfunction. Eur J Gastroenterol Hepatol 2015; 27(8): 920–927. Dostupné z DOI: <http://dx.doi.org/10.1097/MEG.0000000000000382>.
13. Stewart PA. Independent and dependent variables of acid-base control. Respir Physiol 1978; 33(1): 9–26.
14. Stewart PA. Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 1983; 61(12): 1444–1461.
15. Fencl V, Leith DE. Stewart´s quantitative acid-base chemistry: applications in biology and medicine. Respir Physiol 1993; 91(1): 1–16.
16. Henderson LJ. Das Gleichgewicht zwischen Säuren und Basen im Tierischen Organismus. Ergeben Physiol 1909; 8: 254–325.
17. Haselbalch KA. Die Berechnung der Wasserstoffzahl des Blutes aus der freien and gebundenen Kohlesäure desselben, und die Sauerstoffbildung als Funktion der Wasserstoffzahl. Biochem Z 1916; 78: 112–144.
18. Salem M, Mujais S. Gaps in anion gap. Arch Int Med 1992; 152(8): 1625–1629.
19. Fencl V, Rossing TH. Acid-base disorders in critical care medicine. Ann Rev Med 1989; 40: 17–29.
20. Astrup P, Jorgensen K, Andersen Os et al. The acid-base metabolism. A new approach. Lancet 1960; 1(7133): 1035–1039.
21. Fencl J, Jabor A, Kazda A et al. Diagnosis of acid-base disturbances in critically ill patients. Am J Respir Crit Care 2000; 162(6): 2246–2251.
22. Corey HE. Stewart and beyond: new models of acid-base balance. Kidney Int 2003; 64(3): 777–787.
23. Wooten EW. Science review: quantitative acid-base physiology using the Stewart model. Crit Care 2004; 8(6): 448–452.
24. Sirker AA, Rhodes A, Grounds RM et al. Acid-base physiology: the “traditional” and the “modern” approaches. Anaesthesia 2002; 57(4): 348–356.
25. Kurtz I, Kraut J, Ornekian V et al. Acid-base analysis: a critique of the Stewart and bicarbonate-centered approaches. Am J Physiol Renal Physiol 2008; 294(5): F1009-F1031. Dostupné z DOI: <http://dx.doi.org/10.1152/ajprenal.00475.2007>.
26. Matoušovic K, Martínek V. Analýza a korekce poruch acidobazické rovnováhy na základě Stewartova-Fenclova principu. Vnitř Lék 2004; 50(7): 526–530.
27. Havlin J, Matoušovic K, Schuck O et al. Patofyziologie metabolické acidózy u pacientů se sníženou glomerulární filtrací podle Stewartovy-Fenclovy teorie. Vnitř Lék 2009; 55(2): 97–104.
28. Havlin J, Matoušovic K, Schuck O et al. The use of sodium-chloride difference and chloride-sodium ratio in the evaluation of metabolic acidosis in critically ill patients. Eur J Pediatr 2012; 171(11): 1719; author reply 1721–1722. Dostupné z DOI: <http://dx.doi.org/10.1007/s00431–012–1833–2>.
29. Masevicius FD, Dubin A. Has Stewart approach improved our ability to diagnose acid-base disorders in critically ill patients? World J Crit Care Med 2015; 4(1): 62–70. Dostupné z DOI: <http://dx.doi.org/10.5492/wjccm.v4.i1.62>.
30. Schück O, Matoušovic K. Relation between pH and the strong ion difference (SID) in body fluids. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005; 149(1): 69–73.
31. Schück O, Matoušovic K. Vztah mezi pH a diferencí silných iontů (SID) ve vnitřním prostředí. Klin Biochem Metab 2005; 13/34(1): 32–35.
32. Seifter JL. Integration of acid-base and electrolyte disorders. N Engl J Med 2014; 371(19): 1821–1831. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMra1215672>.
33. Boyle M, Baldwin I. Introduction to an alternative view of acid/base balance: the strong ion difference or Stewart approach. Aust Crit Care 2002; 15(1): 14–20.
34. Doberer D, Funk GC, Kirchner K et al. A critique of Stewart‘s approach: the chemical mechanism of dilutional acidosis. Intensive Care Med 2009; 35(12): 2173–2180. Dostupné z DOI: <http://dx.doi.org/10.1007/s00134–009–1528-y>.
35. Kofránek J. Komplexní model acidobazické rovnováhy krve. In: Ziethamlová M (ed). MEDSOFT 2009. Agentura Action M: Praha 2009: 23–160.
36. Figge, J, Jabor A, Kazda A et al. Anion gap and hypoproteinemia. Crit Care Med 1998; 26(11): 1807–1810.
37. Figge J, Rossing TH, Fencl V. The role of serum proteins in acid-base equilibria. J Lab Clin Med 1991; 117(6): 453–467.
38. Watson PD. Modeling the effects of proteins on pH in plasma. J Appl Physiol 1999; 86(4): 1421–1427.
39. Relman AS. Renal acidosis and renal excretion of acid in health and disease. Adv Intern Med 1964; 12: 295–347.
40. Thomas SS, Mitch WE. Mechanisms stimulating muscle wasting in chronic kidney disease: the roles of the ubiquitin-proteasome system and myostatin. Clin Exp Nephrol 2013; 17(2): 174–182. Dostupné z DOI: <http://dx.doi.org/10.1007/s10157–012–0729–9>.
41. Mallat J, Barrailler S, Lemyze M et al. Use of sodium-chloride difference and corrected anion gap as surrogates of Stewart variables in critically ill patients. PLoS One 2013; 8(2): e56635. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0056635>.
42. Garella S, Chang BS, Kahn SI. Dilution acidosis and contraction alkalosis: review of the concept. Kidney Int 1975; 8(5): 279–283.
43. Coles GA. Body composition in chronic renal failure. Q J Med 1972; 41(161): 25–47.
44. Ronco C, Kellum JA, Bellomo R. Acid-Base Problems: Basic Physiology. In: Ronco C, Kellum JA, Bellomo R. Critical Care Nephrology. 2nd ed. Elsevier: Philadelphia 2008. ISBN 978–1416042525.
45. Kurt A, Ecevbit A, Ozkiraz S et al. The use of cloride-sodium ratio in the evaluation of metabolic acidosis in critically ill neonates. Eur J Pediatr 2012, 171(6): 963–969. Dostupné z DOI: <http://dx.doi.org/10.1007/s00431–011–1666–4>.
46. Opatrná S, Matoušovic K, Klaboch J et al. Importance of serum [Na+] and [Cl-] difference in acid-base status classification. Anesth Analg 2010, 111(1): 243; author reply 243–244. Dostupné z DOI: <http://dx.doi.org/10.1213/ANE.0b013e3181dd8a33>.
47. Kříž J, Schück O, Horáčková M. Hyponatremia in spinal cord injury patients: new insight into differentiating between the dilution and depletion forms. Spinal Cord 2015; 53(12): 896. Dostupné z DOI: <http://dx.doi.org/10.1038/sc.2015.131>.
48. Rossing TH, Maffero N, Fencl V. Acid-base effects of altering plasma protein concentration in human blood in vitro. J Appl Physiol 1986; 61(6): 2260–2265.
49. 49 Funk GC, Doberer D, Kneidinger N et al. Acid-base disturbances in critically ill patients with cirrhosis. Liver Int 2007; 27(7): 901–909.
50. Prytz H, Thomsen AC. Acid-base status in liver cirrhosis. Disturbances in stable, terminal and portal-caval shunted patients. Scand J Gastroenterol 1976; 11(3): 249–256.
51. Li XM, Li YX, Meng QH et al. Characteristics of acid-base balance in patients with chronic severe hepatitis: analysis of 126 cases. Zhonghua Yi Xue Za Zhi 2006; 86(30): 2131–2133.
52. Karetzky MS, Mithoefer JC. The cause of hyperventilation and arterial hypoxia in patients with cirrhosis of the liver. Am J Med Sci 1967; 254(6): 797–804.
53. Milionis HJ, Elisaf MS. Acid-base abnormalities in a patient with hepatic cirrhosis. Nephrol Dial Transplant 1999; 14(6): 1599–1601.
54. Hassan H, Joh JH, Bacon BR et al. Evaluation of serum anion gap in patients with liver cirrhosis of diverse etiologies. Mt Sinai J Med 2004; 71(4): 281–284.
55. Lieberman FI, Reynolds TB. Plasma volume in cirrhosis of the liver: its relation to portal hypertension, ascites and renal failure. J Clin Invest 1967; 46(8): 1297–308.
Labels
Diabetology Endocrinology Internal medicineArticle was published in
Internal Medicine
2016 Issue Suppl 6
Most read in this issue
- Metabolic acidosis in chronic kidney disease
- Current options of treatment of hyponatremia
- Gitelman´s syndrome as common cause of hypokalemia and hypomagnesemia
- Osteoporosis – epidemiology and pathogenesis