#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

IgA nephropathy – research-generated questions


Authors: Milan Raška 1,3;  Josef Zadražil 4;  Milada Stuchlová Horynová 1;  Leona Rašková Kafková 2;  Alena Vráblíková 1;  Karel Matoušovic 5;  Jan Novák 3;  Jiří Městecký 3,7,8
Authors‘ workplace: Ústav imunologie LF UP a FN Olomouc 1;  Ústav biologie LF UP v Olomouci 2;  Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA 3;  III. interní klinika LF UP a FN Olomouc 4;  Interní klinika 2. LF UK a FN v Motole, Praha 5;  Oddělení transplantací a tkáňové banky FN v Motole, Praha 6;  Ústav imunologie a mikrobiologie 1. LF UK, Praha 7;  Mikrobiologický ústav Akademie věd České republiky, Praha 8
Published in: Vnitř Lék 2016; 62(Suppl 6): 67-77
Category: Reviews

Overview

IgA nephropathy (IgAN) is the most common type of glomerulonephritis. Its etiology involves an increased production of polymeric immunoglobulin A1 with an abnormal composition of some carbohydrate chains. The reaction of these abnormal forms of IgA1 with specific autoantibodies while circulating immune complexes arise and settle in the renal mesangium with subsequent inflammatory activation of mesangial cells which in up to 50% of cases results in end-stage kidney failure. Pathogenesis involves an interplay of genetic predisposition and environmental effects, mainly of microbial nature. Current therapy is not sufficiently effective and lacks the focus on the cause of the disease, therefore more efficient and specific ways of therapy are being sought to target the individual stages of the pathogenetic process of IgAN development. With the accumulation of knowledge, new questions arise, concerning detailed mechanisms of the pathological processes, as discussed in the text.

Key words:
autoimmunity – glycosylation of IgA hinge region – IgA nephropathy – immunoglobulin IgA – IgA1 hinge region


Sources

1. Berger J, Hinglais N. Intercapillary deposits of IgA-IgG. J Urol Nephrol (Paris) 1968; 74(9): 694–695.

2. Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med 2013; 368(25): 2402–2414. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMra1206793>.

3. Rychlík I, Jancová E, Tesar V. The Czech registry of renal biopsies. Occurrence of renal diseases in the years 1994–2000. Nephrol Dial Transplant. 2004; 19(12): 3040–3049. Dostupné z DOI: < https://www.ncbi.nlm.nih.gov/pubmed/15507479>.

4. Kiryluk K, Li Y, Sanna-Cherchi S et al. Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet 2012; 8(6): e1002765. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pgen.1002765>.

5. Kiryluk K, Novak J, Gharavi AG. Pathogenesis of immunoglobulin A nephropathy: recent insight from genetic studies. Annu Rev Med 2013; 64: 339–356. Dostupné z DOI: <http://dx.doi.org/10.1146/annurev-med-041811–142014>.

6. Kiryluk K, Li Y, Scolari F et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet 2014; 46(11): 1187–1196. Dostupné z DOI: <http://dx.doi.org/10.1038/ng.3118>.

7. Allen AC, Harper SJ, Feehally J. Galactosylation of N- and O-linked carbohydrate moieties of IgA1 and IgG in IgA nephropathy. Clin Exp Immunol 1995; 100(3): 470–474.

8. Tomana M, Matousovic K, Julian BA et al. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int 1997; 52(2): 509–516.

9. Tomana M, Novak J, Julian BA et al. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest 1999; 104(1): 73–81.

10. Mestecky J, Tomana M, Crowley-Nowick PA et al. Defective galactosylation and clearance of IgA1 molecules as a possible etiopathogenic factor in IgA nephropathy. Contrib Nephrol 1993; 104: 172–182.

11. Suzuki H, Fan R, Zhang Z et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest 2009; 119(6): 1668–1677. Dostupné z DOI: <http://dx.doi.org/10.1172/JCI38468>.

12. Kokubo T, Hiki Y, Iwase H et al. Protective role of IgA1 glycans against IgA1 self-aggregation and adhesion to extracellular matrix proteins. J Am Soc Nephrol 1998; 9(11): 2048–2054.

13. Knoppova B, Reily C, Maillard N et al. The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front Immunol 2016; 7: 117. Dostupné z DOI: <http://dx.doi.org/10.3389/fimmu.2016.00117>.

14. Mestecky J, Raska M, Julian BA et al. IgA nephropathy: molecular mechanisms of the disease. Annu Rev Pathol Mech Dis 2013; 8: 217–240. Dostupné z DOI: <http://dx.doi.org/10.1146/annurev-pathol-011110–130216>.

15. Suzuki H, Kiryluk K, Novak J et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol 2011; 22(10): 1795–1803. Dostupné z DOI: <http://dx.doi.org/10.1681/ASN.2011050464>.

16. Julian BA, Quiggins PA, Thompson JS et al. Familial IgA nephropathy. Evidence of an inherited mechanism of disease. N Engl J Med 1985; 312(4): 202–208.

17. Julian BA, Wyatt RJ, Matousovic K et al. IgA nephropathy: a clinical overview. Contrib Nephrol 2007; 157: 19–26.

18. Woof JM, Mestecky J. Mucosal Immunoglobulins. In: Mestecky J, Strober W, Russell MW et al (eds). Mucosal Immunology. 4th ed. Elsevier/Academic Press: Amsterdam 2015: 287–324. ISBN 978–0124158474.

19. Kawamura S, Omoto K, Ueda S. Evolutionary hypervariability in the hinge region of the immunoglobulin alpha gene. J Mol Biol 1990; 215(2): 201–206.

20. Kilian M, Russell MW. Microbial evasion of IgA functions. In: Mestecky J, Strober W, Russell MW et al (eds). Mucosal Immunology. 4th ed. Elsevier/Academic Press: Amsterdam 2015: 455–470. ISBN 978–0124158474.

21. Novak J, Tomana M, Kilian M et al. Heterogeneity of O-glycosylation in the hinge region of human IgA1. Mol Immunol 2000; 37(17): 1047–1056.

22. Takahashi K, Wall SB, Suzuki H et al. Clustered O-glycans of IgA1: Defining macro- and micro-heterogeneity by use of electron capture/transfer dissociation. Mol Cell Proteomics 2010; 9(11): 2545–2557. Dostupné z DOI: <http://dx.doi.org/10.1074/mcp.M110.001834>.

23. Lechner SM, Abbad L, Boedec E et al. IgA1 protease treatment reverses mesangial deposits and hematuria in a model of IgA nephropathy. J Am Soc Nephrol 2016; 27(9): 2622–2629. Dostupné z DOI: <http://dx.doi.org/10.1681/ASN.2015080856>.

24. Suzuki H, Moldoveanu Z, Hall S et al. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest 2008; 118(2): 629–639. Dostupné z DOI: <http://dx.doi.org/10.1172/JCI33189>.

25. Suzuki H, Raska M, Yamada K et al. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J Biol Chem 2014; 289(8): 5330–5339. Dostupné z DOI: <http://dx.doi.org/10.1074/jbc.M113.512277>.

26. Yamaguchi K, Ozono Y, Harada T et al. Changes in circulating immune complex and charge distribution with upper respiratory tract inflammation in IgA nephropathy. Nephron 1995; 69(4): 384–390.

27. Suzuki H, Raska M, Moldoveanu Z et al. Mechanisms of aberrant glycosylation of IgA1 in patients with IgA nephropathy (IgAN). J Am Soc Nephrol 2009; 20: 301A.

28. Baker K, Blumberg RS, Kaetzel CS. Immunoglobulin transport and immunoglobulin receptors. In: Mestecky J, Strober W, Russell MW et al (eds) Mucosal Immunology. 4th ed. Elsevier/Academic Press: Amsterdam 2015: 349–407. ISBN 978–0124158474.

29. Obara W, Iida A, Suzuki Y et al. Association of single-nucleotide polymorphisms in the polymeric immunoglobulin receptor gene with immunoglobulin A nephropathy (IgAN) in Japanese patients. J Hum Genet 2003; 48(6): 293–299.

30. Mestecky J. The common mucosal immune system and current strategies for induction of immune responses in external secretions. J Clin Immunol 1987; 7(4): 265–276.

31. Harper SJ, Allen AC, Layward L et al. Increased immunoglobulin A and immunoglobulin A1 cells in bone marrow trephine biopsy specimens in immunoglobulin A nephropathy. Am J Kidney Dis 1994; 24(6): 888–892.

32. van den Wall Bake AW, Daha MR, Radl J et al. The bone marrow as production site of the IgA deposited in the kidneys of patients with IgA nephropathy. Clin Exp Immunol 1988; 72(2): 321–325.

33. Lai KN, Tang SC, Schena FP et al. IgA nephropathy. Nat Rev Dis Primers 2016; 2: 16001. Dostupné z DOI: <http://dx.doi.org/10.1038/nrdp.2016.1>.

34. Coppo R, Basolo B, Martina G et al. Circulating immune complexes containing IgA, IgG and IgM in patients with primary IgA nephropathy and with Henoch-Schönlein nephritis. Correlation with clinical and histologic signs of activity. Clin Nephrol 1982; 18(5): 230–239.

35. Novak J, Raskova Kafkova L, Suzuki H et al. IgA1 immune complexes from pediatric patients with IgA nephropathy activate cultured human mesangial cells. Nephrol Dial Transplant 2011; 26(11): 3451–3457. Dostupné z DOI: <http://dx.doi.org/10.1093/ndt/gfr448>.

36. Novak J, Tomana M, Matousovic K et al. IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells. Kidney Int 2005; 67(2): 504–513.

37. Zhao N, Hou P, Lv J et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int 2012; 82(7): 790–796. Dostupné z DOI: <http://dx.doi.org/10.1038/ki.2012.197>.

38. Berthoux F, Suzuki H, Thibaudin L et al. Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol 2012; 23(9): 1579–1587. Dostupné z DOI: <http://dx.doi.org/10.1681/ASN.2012010053>.

39. Berthelot L, Robert T, Vuiblet V et al. Recurrent IgA nephropathy is predicted by altered glycosylated IgA, autoantibodies and soluble CD89 complexes. Kidney Int 2015; 88(4): 815–822. Dostupné z DOI: <http://dx.doi.org/10.1038/ki.2015.158>.

40. Jackson S, Montgomery RI, Julian BA et al. Aberrant synthesis of antibodies directed at the Fab fragment of IgA in patients with IgA nephropathies. Clin Immunol Immunopathol 1987; 45(2): 208–213.

41. Rivat L, Rivat C, Daveau M et al. Comparative frequencies of anti-IgA antibodies among patients with anaphylactic transfusion reactions and among normal blood donors. Clin Immunol Immunopathol 1977; 7(3): 340–348.

42. Burks AW, Sampson HA, Buckley RH. Anaphylactic reactions after gamma globulin administration in patients with hypogammaglobulinemia. Detection of IgE antibodies to IgA. N Engl J Med 1986; 314(9): 560–564.

43. Wilson ID, Soltis RD, Williams RC Jr. Naturally occurring human antibodies to pepsin-digested IgA. Blood 1970; 36(3): 390–398.

44. Petty RE, Sherry DD, Johannson JM. IgG anti-IgA1 and anti-IgA2 antibodies: their measurement by an enzyme-linked immunosorbent assay and their relationship to disease. Int Arch Allergy Appl Immunol 1986; 80(4): 337–341.

45. Jackson S, Montgomery RI, Mestecky J et al. Normal human sera contain antibodies directed at Fab of IgA. J Immunol 1987; 138(7): 2244–2248.

46. Jackson S, Montgomery RI, Mestecky J et al. Antibodies directed at Fab of IgA in the sera of normal individuals and IgA nephropathy patients. Adv Exp Med Biol 1987; 216B: 1537–1544.

47. Stuchlova Horynova M, Raska M, Clausen H et al. Aberrant O-glycosylation and anti-glycan antibodies in an autoimmune disease IgA nephropathy and breast adenocarcinoma. Cell Mol Life Sci 2013; 70(5): 829–839. Dostupné z DOI: <http://dx.doi.org/10.1007/s00018–012–1082–6>.

48. Renfrow MB, Cooper HJ, Tomana M et al. Determination of aberrant O-glycosylation in the IgA1 hinge region by electron capture dissociation Fourier transform-ion cyclotron resonance mass spectrometry. J Biol Chem 2005; 280: 19136–19145.

49. Renfrow MB, Mackay CL, Chalmers MJ et al. Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy. Anal Bioanal Chem 2007; 389(5): 1397–1407.

50. Takahashi K, Smith AD, Poulsen K et al. Naturally occurring structural isomers in serum IgA1 O-glycosylation. J Proteome Res 2012; 11(2): 692–702. Dostupné z DOI: <http://dx.doi.org/10.1021/pr200608q>.

51. Novak J, Takahashi K, Suzuki H et al. Heterogeneity of Aberrant O-Glycosylation of IgA1. In: Tomino Y (ed). Pathogenesis and treat­ment in IgA nephropathy. Springer, Tokio 2016: 53–68. ISBN 978-4-431-55587-2.

52. Novak J, Julian BA, Mestecky J et al. Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunopathol 2012; 34(3): 365–382. Dostupné z DOI: <http://dx.doi.org/10.1007/s00281–012–0306-z>.

53. Novak J, Moldoveanu Z, Renfrow MB et al. IgA nephropathy and Henoch-Schoenlein purpura nephritis: aberrant glycosylation of IgA1, formation of IgA1-containing immune complexes, and activation of mesangial cells. Contrib Nephrol 2007; 157: 134–138.

54. Takahashi K, Suzuki H, Yamada K et al. Molecular characterization of IgA1 secreted by IgA1-producing cell lines from patients with IgA nephropathy. J Am Soc Nephrol 2012; 23: 853A.

55. Mestecky J, Suzuki H, Yanagihara T et al. IgA nephropathy: current views of immune complex formation. Contrib Nephrol 2007; 157: 56–63.

56. Springer GF, Tegtmeyer H. Origin of anti-Thomsen-Friedenreich (T) and Tn agglutinins in man and in White Leghorn chicks. Br J Haematol 1981; 47(3): 453–460.

57. Wertz GW, Krieger M, Ball LA. Structure and cell surface maturation of the attachment glycoprotein of human respiratory syncytial virus in a cell line deficient in O glycosylation. J Virol 1989; 63(11): 4767–4776.

58. Springer GF. Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J Mol Med 1997; 75(8): 594–602.

59. Kieff E, Rickinson AB. Epstein-Barr Virus and Its Replication. In: Knipe DM, Howley PM (Eds). Fields Virology. 5th ed. Lippincott Williams and Wilkins, Philadelphia 2007: 2603–2654.

60. Cisar JO, Sandberg AL, Reddy GP et al. Structural and antigenic types of cell wall polysaccharides from viridans group streptococci with receptors for oral actinomyces and streptococcal lectins. Infect Immun 1997; 65(12): 5035–5041.

61. Johnson DC, Spear PG. O-linked oligosaccharides are acquired by herpes simplex virus glycoproteins in the Golgi apparatus. Cell 1983; 32(3): 987–997.

62. Berger EG. Tn-syndrome. Biochim Biophys Acta 1999; 1455(2–3): 255–268.

63. Huang ZQ, Anderson JC, Hall S et al. Immune Complexes from Patients with IgA Nephropathy Containing Galactose-deficient IgA1 and Anti-glycan Antibodies Induce Protein-kinase Signaling and Proliferation in Cultured Human Mesangial Cells. J Am Soc Nephrol 2011; 22: 531A.

64. Huang ZQ, Raska M, Stewart TJ et al. Somatic Mutations Modulate Autoantibodies against Galactose-Deficient IgA1 in IgA Nephropathy. J Am Soc Nephrol 2016; 27(11): 3278–3284. Dostupné z DOI: <http://dx.doi.org/10.1681/ASN.2014101044>.

65. Kunz R, Friedrich C, Wolbers M et al. Meta-analysis: effect of monotherapy and combination therapy with inhibitors of the renin angiotensin system on proteinuria in renal disease. Ann Intern Med 2008; 148(1): 30–48.

66. Li PK, Kwan BC, Chow KM et al. Treatment of early immunoglobulin A nephropathy by angiotensin-converting enzyme inhibitor. Am J Med 2013; 126(2): 162–168. Dostupné z DOI: <http://dx.doi.org/10.1016/j.amjmed.2012.06.028>.

67. Reid S, Cawthon PM, Craig JC et al. Non-immunosuppressive treatment for IgA nephropathy. Cochrane Database Syst Rev 2011; (3): CD003962. Dostupné z DOI: <http://dx.doi.org/10.1002/14651858.CD003962.pub2>.

68. Podracka L, Matousovic K. Doporučené postupy a trendy v imunosupresivní léčbě glomerulonefritid podle KDIGO (Clinical Practice Guideline for Glomerulonephritis). Vnitř Lék 2013; 59(2): 113–118.

69. Donadio JV Jr, Grande JP, Bergstralh EJ et al. The long-term outcome of patients with IgA nephropathy treated with fish oil in a controlled trial. Mayo Nephrology Collaborative Group. J Am Soc Nephrol 1999; 10(8): 1772–1777.

70. Lv J, Xu D, Perkovic V et al. Corticosteroid therapy in IgA nephropathy. J Am Soc Nephrol 2012; 23(6): 1108–1116. Dostupné z DOI: <http://77dx.doi.org/10.1681/ASN.2011111112>.

71. Manno C, Torres DD, Rossini M et al. Randomized controlled clinical trial of corticosteroids plus ACE-inhibitors with long-term follow-up in proteinuric IgA nephropathy. Nephrol Dial Transplant 2009; 24(12): 3694–3701. Dostupné z DOI: <http://dx.doi.org/10.1093/ndt/gfp356>.

72. Rauen T, Eitner F, Fitzner C et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. N Engl J Med 2015; 373(23): 2225–2236. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1415463>.

73. Pozzi C, Andrulli S, Pani A et al. Addition of azathioprine to corticosteroids does not benefit patients with IgA nephropathy. J Am Soc Nephrol 2010; 21(10): 1783–1790. Dostupné z DOI: <http://dx.doi.org/10.1681/ASN.2010010117>.

74. Tang SC, Tang AW, Wong SS et al. Long-term study of mycophenolate mofetil treatment in IgA nephropathy. Kidney Int 2010; 77(6): 543–549. Dostupné z DOI: <http://dx.doi.org/10.1038/ki.2009.499>.

75. Rostoker G, Desvaux-Belghiti D, Pilatte Y et al. High-dose immunoglobulin therapy for severe IgA nephropathy and Henoch-Schonlein purpura. Ann Intern Med 1994; 120(6): 476–484.

76. Feehally J, Coppo R, Troyanov S et al. Tonsillectomy in a European Cohort of 1,147 Patients with IgA Nephropathy. Nephron 2016; 132(1): 15–24. Dostupné z DOI: <http://dx.doi.org/10.1159/000441852>.

77. Yuzawa Y, Yamamoto R, Takahashi K et al. Evidence-based clinical practice guidelines for IgA nephropathy 2014. Clin Exp Nephrol 2016; 20(4): 511–535. Dostupné z DOI: <http://dx.doi.org/10.1007/s10157–015–1223-y>.

78. Smerud HK, Barany P, Lindstrom K et al. New treatment for IgA nephropathy: enteric budesonide targeted to the ileocecal region ameliorates proteinuria. Nephrol Dial Transplant 2011; 26(10): 3237–3242. Dostupné z DOI: <http://dx.doi.org/10.1093/ndt/gfr052>.

79. Yeo SC, Liew A, Barratt J. Emerging therapies in immunoglobulin A nephropathy. Nephrology (Carlton) 2015; 20(11): 788–800. Dostupné z DOI: <http://dx.doi.org/10.1111/nep.12527>.

80. Novak J, Rizk D, Takahashi K et al. New Insights into the Pathogenesis of IgA Nephropathy. Kidney Dis (Basel) 2015; 1(1): 8–18.

81. Yamada K, Reily C, Huang ZQ et al. Characterization of a signaling network that enhances production of galactose-deficient IgA1 in IgA1-secreting cells from patients with IgA Nephropathy. J Am Soc Nephrol 2015; 26: 591A.

82. Mestecky J, Novak J, Moldoveanu Z et al. IgA nephropathy enigma. Clin Immunol 2016; 172:72–77. Dostupné z DOI: <http://dx.doi.org/10.1016/j.clim.2016.07.011>.

83. Conley ME, Bartelt MS. In vitro regulation of IgA subclass synthesis. II. The source of IgA2 plasma cells. J Immunol 1984; 133(5): 2312–2316.

84. Kiryluk K, Novak J. The genetics and immunobiology of IgA nephropathy. J Clin Invest 2014; 124(6): 2325–2332. Dostupné z DOI: <http://dx.doi.org/10.1172/JCI74475>.

85. Raska M, Yamada K, Horynova M et al. Role of GalNAc-transferases in the synthesis of aberrant IgA1 O-glycans in IgA nephropathy. J Am Soc Nephrol 2011; 22: 625A.

86. Raska M, Yamada K, Stewart T et al. Role of N-Acetylgalactosaminyl Transferases in the Synthesis of Aberrant IgA1 O-Glycans in IgA Nephropathy. J Am Soc Nephrol 2012; 23: 210A–211A.

87. Raska M, Moldoveanu Z, Suzuki H et al. Identification and characterization of CMP-NeuAc:GalNAc-IgA1 α2,6-sialyltransferase in IgA1-producing cells. J Mol Biol 2007; 369(1): 69–78.

88. Stuchlova Horynova M, Vrablikova A, Stewart TJ et al. N-acetylgalactosaminide α2,6-sialyltransferase II is a candidate enzyme for sialylation of galactose-deficient IgA1, the key autoantigen in IgA nephropathy. Nephrol Dial Transplant 2015; 30(2): 234–238. Dostupné z DOI: <http://dx.doi.org/10.1093/ndt/gfu308>.

89. Takahashi K, Raska M, Stuchlova Horynova M et al. Enzymatic sialylation of IgA1 O-glycans: implications for studies of IgA nephropathy. PLoS One 2014; 9(2): e99026. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0099026>.

90. Horynova M, Takahashi K, Hall S et al. Production of N-acetylgalactosaminyl-transferase 2 (GalNAc-T2) fused with secretory signal Igkappa in insect cells. Protein Expr Purif 2012; 81(2): 175–180. Dostupné z DOI: <http://dx.doi.org/10.1016/j.pep.2011.10.006>.

91. Kasperova A, Ueda H, Stuchlova Horynova M et al. Preventing of formation of IgA1- Containing Immune Complexes in IgA 1 Nephropathy. J Am Soc Nephrol 2013; 23: 490A.

92. Novak J, Mestecky J. IgA Immune-complex. In: Lai KN (ed). Recent Advances in IgA Nephropathy. Imperial College Press and the World Scientific Publisher: Hong Kong 2009: 177–191. ISBN 9789812835864.

93. Wesolowski J, Alzogaray V, Reyelt J et al. Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med Microbiol Immunol 2009; 198(3): 157–174. Dostupné z DOI: <http://dx.doi.org/10.1007/s00430–009–0116–7>.

94. Vincke C, Muyldermans S. Introduction to heavy chain antibodies and derived Nanobodies. Methods Mol Biol 2012; 911: 15–26. Dostupné z DOI: <http://dx.doi.org/10.1007/978–1-61779–968–6_2>.

95. De Meyer T, Muyldermans S, Depicker A. Nanobody-based products as research and diagnostic tools. Trends Biotechnol 2014; 32(5): 263–270. Dostupné z DOI: <http://dx.doi.org/10.1016/j.tibtech.2014.03.001.

96. Tamouza H, Chemouny JM, Raskova Kafkova L et al. The IgA1 immune complex-mediated activation of the MAPK/ERK kinase pathway in mesangial cells is associated with glomerular damage in IgA nephropathy. Kidney Int 2012; 82(12): 1284–1296. Dostupné z DOI:

97. Kim MJ, McDaid JP, McAdoo SP et al. Spleen tyrosine kinase is important in the production of proinflammatory cytokines and cell proliferation in human mesangial cells following stimulation with IgA1 isolated from IgA nephropathy patients. J Immunol 2012; 189(7): 3751–3758.

98. Huang ZQ, Anderson J, Rohrbach TD et al. Characterization of signaling pathways in cultured human mesangial cells Induced by IgA1-containing immune complexes from patients with IgA nephropathy. J Am Soc Nephrol 2012; 23: 824A.

99. Lamm ME, Emancipator SN, Robinson JK et al. Microbial IgA protease removes IgA immune complexes from mouse glomeruli in vivo: potential therapy for IgA nephropathy. Am J Pathol 2008; 172(1): 31–36. Dostupné z DOI: <http://dx.doi.org/10.2353/ajpath.2008.070131>.

100. Eitner F, Floege J. Bacterial protease for the treatment of IgA nephropathy. Nephrol Dial Transplant 2008; 23(7): 2173–2175. Dostupné z DOI: <http://dx.doi.org/10.1093/ndt/gfn155>.

101. Reinholdt J, Kilian M. Titration of inhibiting antibodies to bacterial IgA1 proteases in human sera and secretions. Adv Exp Med Biol 1995; 371A: 605–608.

102. Kilian M, Reinholdt J, Lomholt H et al. Biological significance of IgA1 proteases in bacterial colonization and pathogenesis: critical evaluation of experimental evidence. APMIS 1996; 104(5): 321–338.

103. Stockert RJ, Kressner MS, Collins JD et al. IgA interactions with the asialoglycoprotein receptor. Proc Natl Acad Sci USA 1982; 79(20): 6229–6231.

104. Novak J, Julian BA, Tomana M et al. IgA glycosylation and IgA immune complexes in the pathogenesis of IgA nephropathy. Semin Nephrol 2008; 28(1): 78–87. Dostupné z DOI: <http://dx.doi.org/10.1016/j.semnephrol.2007.10.009>.

105. Silva FG, Chander P, Pirani CL et al. Disappearance of glomerular mesangial IgA deposits after renal allograft transplantation. Transplantation 1982; 33(2): 241–246.

106. Coppo R, Amore A, Cirina P et al. IgA serology in recurrent and non-recurrent IgA nephropathy after renal transplantation. Nephrol Dial Transplant 1995; 10(12): 2310–2315.

107. Coppo R, Amore A, Cirina P et al. Characteristics of IgA and macromolecular IgA in sera from IgA nephropathy transplanted patients with and without IgAN recurrence. Contrib Nephrol 1995; 111: 85–92.

Labels
Diabetology Endocrinology Internal medicine

Article was published in

Internal Medicine

Issue Suppl 6

2016 Issue Suppl 6

Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#