Molecular genetics of hypercholesterolemia
Authors:
Lucie Schwarzová
Authors‘ workplace:
III. interní klinika 1. LF UK a VFN v Praze
Published in:
Vnitř Lék 2016; 62(11): 877-881
Category:
Reviews
Overview
The review focuses on the molecular background of an inborn error of lipid metabolism -familial hypercholesterolemia. FH describes a group of genetic defects resulting in severe elevations of blood cholesterol levels and increased risk of premature coronary heart disease. Most cases are due to the mutations decreasing and/or destroying the function of the LDL receptor (85–90 % of cases), smaller portion of cases is caused by defects in the gene encoding the ligand for LDL receptor – apolipoprotein B-100 (5–10 %). Less than 5 % of cases has gain-of-function station of the PCSK9 gene that increases the rate of degradation of the LDL receptor molecules. Autosomal recessive form of the disease, caused by the mutations in LDLR adaptor protein 1 gene, is extremely rare.
Key words:
APOB – familial hypercholesterolemia – LDLR – LDLRAP1 – PCSK9
Sources
1. Rader DJ, Cohen J, Hobbs HH. Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest 2003; 111(12): 1795–803. Dostupné z DOI: <http://dx.doi.org/10.1172/JCI18925>.
2. Lehrman MA, Russell DW, Goldstein JL et al. Alu-Alu recombination deletes splice acceptor sites nd produces secreted low density lipoprotein receptor in a subject with familial hypercholesterolemia. J Biol Chem 1987; 262(7): 3354–3361.
3. Kotze MJ, Langenhoven E, Warnich L et al. The molecular basis and diagnosis of familial hypercholesterolaemia in South African Afrikaners. Ann Hum Genet 1991; 55(Pt 2): 115–121.
4. Meiner V, Landsberger D, Berkman N et al. A common Lithuanian mutation causing familial hypercholesterolemia in Ashkenazi Jews. Am J Hum Genet 1991; 49(2): 443–449.
5. Leitersdorf E, Tobin EJ, Davignon J et. Common low-density lipoprotein receptor mutations in the French Canadian population. J Clin Invest 1990; 85(4): 1014–1023.
6. Koivisto UM, Turtola H, Aalto-Setala K et al. The familial hypercholesterolemia (FH)-North Karelia mutation of the low density lipoprotein receptor gene deletes seven nucleotides of exon 6 and is a common cause of FH in Finland. J Clin Invest 1992; 90(1): 219–228.
7. Landsberger D, Meiner V, Reshef A et al. A nonsense mutation in the LDL receptor gene leads to familial hypercholesterolemia in the Druze sect. Am J Hum Genet 1992; 50(2): 427–433.
8. Seftel, HC, Baker, SG, Jenkins T et al. Prevalence of familial hypercholesterolemia in Johannesburg Jews. Am J Med Genet 1989; 34(4): 545–547. Dostupné z DOI: <http://dx.doi.org/10.1002/ajmg.1320340418>.
9. Benn M, Gerald F. Watts et al. Familial hypercholesterolemia in the Danish General Population: Prevalence, Coronary Artery Disease, and Cholesterol-Lowering Medication. J Clin Endocrinol Metab 2012; 97(11): 3956–3964. Dostupné z DOI: <http://dx.doi.dorg/10.1210/jc.2012–1563>. Erratum in J Clin Endocrinol Metab 2014; 99(12): 4758–4759.
10. De Castro-Orós I, Pocoví M, Civeira F. The genetic basis of familial hypercholesterolemia: inheritance, linkage, and mutations. Appl Clin Genet 2010; 3: 53–64.
11. Tolleshaug H, Goldstein JL, Schneider WJ et al. Posttranslational processing of the LDL receptor and its genetic disruption in familial hypercholesterolemia. Cell 1982; 30(3): 715–724.
12. Sudhof TC, Goldstein JL, Brown MS et al. The LDL receptor gene: A mosaic of exons shared with different proteins. Science 1985; 228(4701): 815–822.
13. Long M, Betran E, Thornton K et al. The origin of new genes: glimpses from the young and old. Nat Rev Genet 2003; 4(11), 865–875. Dostupné z DOI: <http://dx.doi.org/10.1038/nrg1204>.
14. Brown MS, Goldstein JL. 1999: A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. PNAS 1999; 96(20): 11041–11048. Dostupné z DOI: <http://dx.doi.org/10.1073/pnas.96.20.11041>.
15. Jeon H, Meng W, Takagi J et al. Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair. Nat Struct Biol 2001; 8(6): 499–504.
16. Dawson PA, Hofmann SL, van der Westhuyzen DR et al. Sterol-dependent repression of low density lipoprotein receptor promoter mediated by 16-base pair sequence adjacent to binding site for transcription factor Sp1. J Biol Chem 1988; 263(7): 3372–3379.
17. Smith AJ, Ahmed F, Nair D et al. A functional mutation in the LDLR promoter (-139C . G) in a patient with familial hypercholesterolemia. Eur J Hum Genet 2007; 15(11): 1186–1189.
18. Scholtz CL, Peeters AV, Hoogendijk CF et al. Mutation -59c→t in repeat 2 of the LDL receptor promoter: reduction in transcriptional activity and possible allelic interaction in a South African family with familial hypercholesterolemia. Hum Mol Genet 1999; 8(11): 2025–2030.
19. Francová H, Trbusek M, Zapletalová P et al. New promoter mutations in the low-density lipoprotein receptor gene which induce familial hypercholesterolaemia phenotype: molecular and functional analysis. J Inherit Metab Dis 2004; 27(4): 523–528.
20. Hobbs HH, Russell DW, Brown MS et al. The LDL receptor locus in familial hypercholesterolemia: Mutational analysis of a membrane protein. Annu Rev Genet 1990; 24: 133–170.
21. Fokkema IFAC, Den Dunnen JT, Taschner PEM. LOVD: easy creation of a locus-specific sequence variation database using an „LSDB-in-a-Box“ approach. Hum Mutat 2005; 26(2): 63–68. Dostupné z WWW: <http://onlinelibrary.wiley.com/doi/10.1002/humu.20201/abstract>.
22. Mahley TW, Innerarity TL, Weisgraber KH et al. Cellular and molecular biology of lipoprotein metabolism: Characterization of lipoprotein receptor- ligand interaction. Cold Spring Harb Symp Quant Biol 1986; 51(Pt 2): 821–827.
23. Fisher C, Abdul-Aziz D, Blacklow SC. A two-modulate region of the low-density lipoprotein receptor suff icient for formation of complexes with apolipoprotein E ligands. Biochemistry 2004; 43(4): 1037–1044.
24. Arias-Moreno X, Velázquez-Campoy A, Rodríguez JC et al. Mechanism of low density lipoprotein (LDL) release in the Endosome. J Biol Chem 2008; 283(33): 22670–22679. Dostupné z DOI: <http://dx.doi.org/10.1074/jbc.M802153200>.
25. Sudhof TC, Russell DW, Goldstein JL et al. Cassette of eight exons shared by genes LDL receptor and EGF precursor. Science 1985; 228(4701): 893–895.
26. Brown MS, Herz J, Goldstein JL. Calcium cages, acid baths and recycling receptors. Nature 1997; 388(6643): 629–630.
27. Zhang DW, Lagace TA, Garuti R et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem 2007; 282(28): 20502–20512.
28. May P, Bock HH, Nimpf J et al. Differential Glycosylation Regulates Processing of Lipoprotein Receptors by γ-Secretase. J Biol Chem 2003; 278(39): 37386–37392.
29. Yokode M, Pathak RK, Hammer RE et al. Cytoplasmic sequence required for basolateral targeting of LDL receptor in livers of transgenic mice. J Cell Biol 1992; 117(1): 39–46.
30. Talmud PJ, Shah S, Whittall R et al. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study. Lancet 2013; 381(9874): 1293–1301. Dostupné z DOI: <http://dx.doi.org/10.1016/S0140–6736(12)62127–8>.
31. Vega GL, Grundy SM. In vivo evidence for reduced binding of low density lipoproteins to receptors as a cause of primary moderate hypercholesterolemia. J Clin Invest 1986; 78(5): 1410–1414.
32. Soria LF, Luewig EH, Clarke HR et al. Association between a specific apolipoprotein B mutation and familial defective apoipoprotein B-100. Proc Natl Acad Sci U S A 1989; 86(2): 587–591.
33. Pullinger CR, Hennessy LK, Chatterton JE et al. Familial ligand defective apolipoprotein B: identification of a new mutation that decreases LDL receptor binding affinity. J Clin Invest 1995; 95(3): 1225–1234.
34. Soufi M, Sattler AM, Maerz W et al. A new but frequent mutation of APOB-100-APOB His3543Tyr. Atherosclerosis 2004; 174(1): 11–16.
35. Schwarzová L, Hořínek A, Vrablík M et al. Effect of APOE genotype on LDL cholesterol levels in FH and FDB patients: Is there sex-specifically protective genotype? Atherosclerosis 2016; 252: e40. Dostupné z DOI: <http://dx.doi.org/10.1016/j.atherosclerosis.2016.07.360>.
36. Varret M, Rabès JP, Saint-Jore B et al. A third major locus for autosomal dominant hypercholesterolemia maps to 1p34.1-p32. Am J Hum Genet 1999; 64(5): 1378–1387.
37. Abifadel M, Elbitar S, El Khoury P et al. Living the PCSK9 adventure: from the identification of a new gene in familial hypercholesterolemia towards a potential new class of anticholesterol drugs. Curr Atheroscl Rep 2014; 16(9): 439. Dostupné z DOI: <http://dx.doi.org/10.1007/s11883–014–0439–8>.
38. Zhang DW, Lagace TA, Garuti R et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipiprotein receptor decreases receptor recycling and increases degradation. J Biol Chem 2007; 282(25): 18602–18612.
39. Kwon HJ, Lagace TA, McNutt MC et al. Molecular basis for LDL receptor recognition by PCSK9. Proc Natl Acad Sci U S A 2008; 105(6):1820–1825. Dostupné z DOI: <http://dx.doi.org/10.1073/pnas.0712064105>.
40. Abifadel M, Varret M, Rabès JP et al. Differential Glycosylation Regulates Processing of Lipoprotein Receptors by γ-Secretase. J Biol Chem 2003; 278(39): 37386–37392.
41. Steinberg D, Witztum JL. Inhibition of PCSK9: a powerful weapon for achieving ideal LDL cholesterol levels. Proc Natl Acad Sci U S A 2009; 106(24): 9546–9547. Dostupné z DOI: <http://dx.doi.org/10.1073/pnas.0904560106>.
42. Cunningham D, Danley DE, Geoghegan KF et al. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol 2007; 14(5): 413–419.
43. Ouguerram K, Chetiveaux M, Zair Y et al. Apolipoprotein B100 metabolism in autosomal-dominant hypercholesterolemia related to mutations in PCSK9. Arterioscler Thromb Vasc Biol 2004; 24(8): 1448–1453.
44. Sun X-M, Eden ER, Tosi I et al. Evidence for effect of mutant PCSK9 on apolipoprotein B secretion as the cause of unusually severe dominant hypercholesterolaemia. Hum Mol Genet 2005; 14(9): 1161–1169.
45. Miyake, Y, Kimura R, Kokubo Y et al. Genetic variants in PCSK9 in the Japanese population: Rare genetic variants in PCSK9 might collectively contribute to plasma LDL cholesterol levels in the general population. Atherosclerosis 2008; 196(1): 29–36.
46. Fellin R, Arca M, Zuliani G. The history of Autosomal Recessive Hypercholesterolemia (ARH). From clinical observations to gene identification. Gene 2015; 555(1): 23–32.
47. Garcia CK, Wilund K, Arca M et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor pro tein. Science 2001; 292(5520): 1394–1398.
48. Wilund KR, Yi M, Campagna F et al. Molecular mechanisms of autosomal recessive hyper- cholesterolemia. Hum Mol Genet 2002; 11(24): 3019–3030.
49. Calò CM, Melis A, Vona G et al. Sardinian population (Italy): a genetic review. Int J Mod Anthropol 2008; 1: 1–121. Dostupné z WWW: <http://www.ajol.info/index.php/ijma/article/viewFile/60356/48592>.
Labels
Diabetology Endocrinology Internal medicineArticle was published in
Internal Medicine
2016 Issue 11
Most read in this issue
- A diet suitable for patients with dyslipidemia and metabolic syndrome
- Hyperlipoproteinemia in children
- Hyperlipoproteinemia and dyslipidemia as rare diseases. Diagnostics and treatment
- Uric acid as a risk factor for cardiovascular diseases