Osteoporosis in chronic obstructive pulmonary disease
Authors:
P. Pobeha 1; I. Lazúrová 2; R. Tkáčová 1
Authors‘ workplace:
Klinika pneumológie a ftizeológie Lekárskej fakulty UPJŠ a FN L. Pasteura Košice, Slovenská republika, prednostka prof. MU Dr. Ružena Tkáčová, DrSc.
1; I. interná klinika Lekárskej fakulty UPJŠ a FN L. Pasteura Košice, Slovenská republika, prednostka prof. MU Dr. Ivica Lazúrová, Ph. D.
2
Published in:
Vnitř Lék 2010; 56(11): 1142-1149
Category:
Reviews
Overview
Patients with chronic obstructive pulmonary disease (COPD) are at increased risk of osteoporosis because of their age, limited physical activity, low body mass index, smoking, hypogonadism, malnutrition, and use of corticosteroids. Systemic inflammation represents an additional pathomechanism contributing to the development of osteoporosis in COPD patients. Males in their mid to late 60s with a smoking history of greater than 60 pack‑years have a prevalence rate of vertebral fractures similar to, and possibly greater than, postmenopausal women greater than or equal to 65 years old: in patients with severe COPD, up to 50– 70% have osteoporosis or osteopenia, and up to 24– 30% have compression vertebral fractures. Correlates of osteoporosis in COPD are mainly measures of body composition, disease severity and the use of corticosteroids, although causality has not been proven. Systemic corticosteroids remain the most common cause of drug‑related osteoporosis, and a meta‑analysis concluded that the use of more than 6.25 mg prednisone daily led to decreased bone mineral density (BMD) and increased fracture risk. In contrast, the effects of the long‑term use of inhaled corticosteroids on BMD remain debatable. Effects of treatment of osteoporosis have not been investigated in samples consisting of COPD patients only but the recommendations follow the general recommendations for the diagnosis and treatment of osteoporosis. Early recognition of BMD loss is essential, and assumes close interdisciplinary cooperation between respirologists and reumatologists. Longitudinal follow‑up to assess determinants of osteoporosis in COPD and randomised placebo‑ controlled trials on the effects of treatment of osteoporosis in patients with COPD only are warranted. In the future, novel therapeutical strategies such as monoclonal antibodies against osteoclasts activators may prove their benefitial effects in the treatment of COPD‑related osteoporosis.
Key words:
osteoporosis – bone mineral density – chronic obstructive pulmonary disease – systemic inflammation – corticosteroids
Sources
1. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis management and prevention of COPD [on‑line]. Updated 2008; accessed 2010 Mar 12. Available from: http:/ / www.goldcopd.org.
2. van Weel C, Schellevis FG. Comorbidity and guidelines: conflicting interests. Lancet 2006; 367: 550– 551.
3. WHO Scientific Group on the Prevention and management of Osteoporosis. Prevention an Management of Osteoporosis: report of a WHO scientific group. Geneva 2003. Date last accessed: June 10, 2010. Available from: http:/ / whqlibdoc.who.int/ trs/ WHO_TRS_921.pdf.
4. Legrand E, Chappard D, Pascaretti C et al. Bone mineral density and vertebral fractures in men. Osteoporos Int 1999; 10: 265– 270.
5. Iqbal F, Michaelson J, Thaler L et al. Declining bone mass in men with chronic pulmonary disease: contribution of glucocorticoid treatment, body mass index, and gonadal function. Chest 1999; 116: 1616– 1624.
6. Incalzi RA, Caradonna P, Ranieri P et al. Correlates of osteoporosis in chronic obstructive pulmonary disease. Respir Med 2000; 94: 1079– 7084.
7. Graat- Verboom L, Wouters EF, Smeenk FW et al. Current status of research on osteoporosis in COPD: a systematic review. Eur Respir J 2009; 34: 209– 218.
8. Vrieze A, de Greef MH, Wijkstra PJ et al. Low bone mineral density in COPD patients related to worse lung function, low weight and decreased fat‑free mass. Osteoporos Int 2007; 18: 1197– 1202.
9. Ionescu AA, Schoon E. Osteoporosis in chronic obstructive pulmonary disease. Eur Respir J 2003; 46: 64s– 75s.
10. Seeman E, Melton LJ 3rd, O’Fallon WM et al. Risk factors for spinal osteoporosis in men. Am J Med 1983; 75: 977– 983.
11. Slemenda CW, Christian JC, Reed T et al. Long‑term bone loss in men: effects of genetic and environmental factors. Ann Intern Med 1992; 117: 286– 291.
12. Seeman E. The effects of tobacco and alcohol use on bone. In: Marcus R, Feldman D, Kelsey J (eds). Osteoporosis. New York: Academy press 1996: 577– 597.
13. Riancho JA, González- Macías J, Del Arco C et al. Vertebral compression fractures and mineral metabolism in chronic obstructive lung disease. Thorax 1987; 42: 962– 966.
14. Canalis E. Clinical review 83: Mechanisms of glucocorticoid action in bone: implications to glucocorticoid‑induced osteoporosis. J Clin Endocrinol Metab 1996; 81: 2441– 3447.
15. Scanlon PD, Connett JE, Wise RA et al. Loss of bone density with inhaled triamcinolone in Lung Health Study II. Am J Respir Crit Care Med 2004; 170: 1302– 1309.
16. Pauwels RA, Löfdahl CG, Laitinen LA et al. Long‑term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking. N Engl J Med 1999; 340: 1948– 1953.
17. de Vries F, Pouwels S, Lammers JW et al. Use of inhaled and oral glucocorticoids, severity of inflammatory disease and risk of hip/ femur fracture: a population‑based case- control study. J Intern Med 2007; 261: 170– 177.
18. Yang IA, Fong KM, Sim EH et al. Inhaled corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2007; 2: CD002991.
19. American Thoracic Society and European Thoracic Society. Skeletal muscle dysfunction in chronic obstructive disease. Am J Respir Crit Care Med 1999; 159 (Suppl 4): S1– S40.
20. Evans WJ, Morley JE, Argilés J et al. Cachexia: a new definition. Clin Nutr 2008; 27: 793– 799.
21. Wouters EF, Creutzberg EC, Schols AM. Systemic effects in COPD. Chest 2002; 121 (Suppl 5): 127S– 130S.
22. Engelen MP, Schols AM, Heidendal GA et al. Dual- energy X‑ray absorptiometry in the clinical evaluation of body composition and bone mineral density in patients with chronic obstructive pulmonary disease. Am J Clin Nutr 1998; 68: 1298– 1303.
23. Wiederkehr M, Krapf R. Metabolic and endocrine effects of metabolic acidosis in humans. Swiss Med Wkly 2001; 131: 127– 132.
24. Wynn E, Krieg M, Lanham- New SA et al. Postgraduate symposium: positive influence of nutritional alkalinity on bone health. Proc Nutr Soc 2010; 69: 166– 173.
25. Szulc P, Munoz F, Claustrat B et al. Bioavailable estradiol may be an important determinant of osteoporosis in men: the MINOS study. J Clin Endocrinol Metab 2001; 86: 192– 199.
26. Pearce G, Tabensky DA, Delmas PD et al. Corticosteroid induced bone loss in men. J Clin Endocrinol Metab 1998; 83: 801– 806.
27. Van Vliet M, Spruit MA, Verleden G et al. Hypogonadism, quadriceps weakness, and exercise intolerance in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005; 172: 1105– 1111.
28. Rosen CJ, Donahue LR. Insulin‑like growth factors and bone: the osteoporosis connection revisited. Proc Soc Exp Biol Med 1998; 219: 1– 7.
29. Decramer M. Respiratory muscles in COPD: regulation of trophical status. Verh K Acad Geneeskd Belg 2001; 63: 577– 602.
30. Barnes PJ. Mediators of chronic obstructive pulmonary disease. Pharmacol Rev 2004; 56: 515– 548.
31. Bolton CE, Evans M, Ionescu AA et al. Insulin resistance and inflammation: a further systemic complication of COPD. COPD 2007; 4: 121– 126.
32. Ginaldi L, Di Benedetto MC, De Martinis M. Osteoporosis, inflammation and ageing. Immun Ageing 2005; 2: 14.
33. Sabit R, Bolton CE, Edwards PH et al. Arterial stiffness and osteoporosis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007; 175: 1259– 1265.
34. Odborné usmernenie MZ SR pre diagnostiku a liečbu glukokortikoidmi indukovanej osteoporózy. In: Vestník Ministerstva zdravotníctva Slovenskej republiky [online]. 2009, vol. 57 [cit.2010– 06– 23]. Available from: http:/ / www.osteoporoza.sk/ lekari/ legislativa/ files/ GIOP.pdf.
35. Palička V, Pohlídal A, Živný P. Terapie osteoporózy. Intern Med 2002; 4: 381– 385.
36. Tang BM, Eslick GD, Nowson C et al. Use of calcium or calcium in combination with Vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta‑analysis. Lancet 2007; 370: 657– 666.
37. Odborné usmernenie MZ SR pre diagnostiku a liečbu osteoporózy. In: Vestník Ministerstva zdravotníctva Slovenskej republiky [online]. 2006, vol. 54 [cit.2010– 06– 23]. Available from: http:/ / www.osteoporoza.sk/ lekari/ legislativa/ files/ usmernenie.pdf.
38. Kanis JA, Burlet N, Cooper C et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2008; 19: 399– 428.
39. Ebetino FH, Francis MD, Rogers MJ et al. Mechanisms of action of etidronate and other bisphosphonates. Rev Contemp Pharmacother 1998; 9: 233– 243.
40. Johnson DA, Williams MI, Petkov VI et al. Zoledronic acid treatment of osteoporosis: effects in men. Endocr Pract 2010; 24: 1– 23.
41. Lewiecki EM. Current and emerging pharmacologic therapies for the management of postmenopausal osteoporosis. J Womans Health 2009; 18: 1615– 1626.
42. Horák P, Píka T. Současné možnosti diagnostiky a léčby osteoporózy. Vnitř Lék 2006; 52: 749– 755.
43. Lewiecki EM. Denosumab – an emerging treatment for postmenopausal osteoporosis. Expert Opin Biol Ther 2010; 10: 467– 476.
Labels
Diabetology Endocrinology Internal medicineArticle was published in
Internal Medicine
2010 Issue 11
Most read in this issue
- Central hemiparesis as manifestation of systemic vasculitis
- Autoimmune polyendocrine syndrome type 2 associated with autoimmune hypophysitis and coeliac disease
- Lymphoma‑like course in aggressive adult multisystem Langerhans cell histiocytosis and the benefit of PET/ CT imaging in evaluation of diffuse metabolic activity of lung parenchyma
- Determination of the progression of prostate cancer using RT‑PCR method