#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Change in the level of proline in urine may predict remission or prostatic carcinoma relapse


Authors: Z. Heger 1,2;  N. Cernei 1,2;  J. Gumulec 2,3;  Š. Veselý 4;  O. Zítka 1,2;  M. Masařík 2,3;  V. Adam 1,2;  R. Kizek 1,2
Authors‘ workplace: Mendelova univerzita v Brně, Ústav chemie a biochemie, Vedoucí: doc. RNDr. Vojtěch Adam, Ph. D. 1;  Vysoké učení technické v Brně, Středoevropský technologický institut, Vedoucí: prof. Ing. Radimír Vrba, CSc. 2;  Masarykova Univerzita v Brně, Lékařská fakulta, Ústav patologické fyziologie, Vedoucí: prof. MUDr. Anna Vašků, CSc. 3;  2. lékařská fakulta Univerzity Karlovy a FNM, Praha, Urologická klinika, Přednosta: prof. MUDr. Marek Babjuk, CSc. 4
Published in: Prakt. Lék. 2015; 95(1): 31-35
Category: Of different specialties

Overview

Since 1980, prostate specific antigen (PSA) has been using for screening of prostate carcinoma, followed by other diagnostic approaches. The relative reliability of these examinations is redeemed by painful, invasive damage of tissue. Hence, nowadays arises the requirement for molecules that could be utilized for diagnostic and/or prognostic purposes. In this study we present a pilot experiment that deals with the potential of the amino acid – proline. Previously we showed that proline may serve as an auxiliary diagnostic marker. Using comparison of two groups of patients (n = 30) we showed that proline may also provide very useful information about the treatment outcome after surgery for prostate carcinoma. Urinary samples obtained from patients after radical prostatectomy, in whom incomplete removal of prostate cancer tissue was suspected, contained higher levels of proline, when compared to the group of patients with remission. Although the prognostic potential of proline is promising, comprehensive study of large cohort of patients with long term follow-up is required to confirm our hypothesis.

Keywords:
prostate carcinoma – biomarker – prognosis – ion-exchange chromatography – proline


Sources

1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013; 63: 11–30.

2. Boyle P, Ferlay J. Cancer incidence and mortality in Europe, 2004. Ann Oncol 2005; 16: 481–488.

3. Heger Z, Cernei N, Gumulec J, et al. Determination of common urine substances as an assay for improving prostate carcinoma diagnostics. Oncol Rep 2014; 31: 1846–1854.

4. Boyd LK, Mao X, Xue L, et al. High-resolution genome-wide copy-number analysis suggests a monoclonal origin of multifocal prostate cancer. Genes Chromosomes Cancer 2012; 51: 579–589.

5. Zelenko Z, Gallagher EJ. Diabetes and Cancer. Endocrinol Metab Clin North Am 2014; 43: 167–185.

6. Astigueta JC, Abad MA, Morante C, et al. Characteristics of metastatic prostate cancer ocurring in patients under 50 years of age. Actas Urol Esp 2010; 34: 327–332.

7. Bjartell A. Genetic markers and the risk of developing prostate cancer. Eur Urol 2011; 60: 29–31.

8. Tindall EA, Monare LR, Petersen DC, et al. Clinical presentation of prostate cancer in black South Africans. Prostate 2014; 74: 880–891.

9. Cernei N, Heger Z, Gumulec J, et al. Sarcosine as a potential prostate cancer biomarker-a review. Int J Mol Sci 2013; 14: 13893–13908.

10. Abu Aboud O, Weiss RH. New opportunities from the cancer metabolome. Clin Chem 2013; 59: 138–146.

11. Brawer MK. Prostate-specific antigen. Semin Surg Oncol 2000; 18: 3–9.

12. Abrams P, Chapple C, Khoury S, et al. Evaluation and treatment of lower urinary tract symptoms in older men. J Urol 2013; 189: S93–S101.

13. Hung SF, Chung SD, Kuo HC. Increased serum C-reactive protein level is associated with increased storage lower urinary tract symptoms in men with benign prostatic hyperplasia. Plos One 2014. DOI: 10.1371/journal.pone.0085588

14. Kindermann W, Lehmann V, Herrmann M, et al. Influencing of the PSA concentration in serum by physical exercise (especially bicycle riding). Urologe 2011; 50: 188–196.

15. Bitencourt AGV, Tyng CJ, Pinto PNV, et al. Percutaneous biopsy based on PET/CT findings in cancer patients technique, indications, and results. Clin Nucl Med 2012; 37: E95–E97.

16. Rubio-Briones J, Casanova-Salas I, Fernandez-Serra A, et al. Non-invasive diagnosis of prostate cancer: serum and urine markers. Arch Esp Urol 2013; 66: 440–452.

17. Jamaspishvili T, Kral M, Khomeriki I, et al. Urine markers in monitoring for prostate cancer. Prostate Cancer and Prostatic Dis 2010; 13: 12–19.

18. Schostak M, Schwall GP, Poznanovic S, et al. Annexin A3 in urine: a highly specific noninvasive marker for prostate cancer early detection. J Urol 2009; 181: 343–353.

19. Goode RR, Marshall SJ, Duff M, et al. Use of PCA3 in detecting prostate cancer in initial and repeat prostate biopsy patients. Prostate 2013; 73: 48–53.

20. Day JR, Jost M, Reynolds MA, et al. PCA3: From basic molecular science to the clinical lab. Cancer Lett 2011; 301: 1–6.

21. Matsuda Y, Miyashita A, Fujimoto Y, et al. Clinical application of basic arginine amidase in human male urine. Biol Pharm Bull 1996; 19: 1083–1085.

22. Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009; 457: 910–914.

23. Cernei N, Zitka O, Ryvolova M, et al. Spectrometric and electrochemical analysis of sarcosine as a potential prostate carcinoma marker. Int J Electrochem Sci 2012; 7: 4286–4301.

24. Mukherjee S, Cruz-Rodriguez O, Bolton E, et al. The in vivo role of androgen receptor SUMOylation as revealed by androgen insensitivity syndrome and prostate cancer mutations targeting the proline/glycine residues of synergy control motifs. J Biol Chem 2012; 287: 31195–31206.

25. Xie TX, Zhou G, Zhao M, et al. Serine substitution of proline at codon 151 of TP53 confers gain of function activity leading to anoikis resistance and tumor progression of head and neck cancer cells. Laryngoscope. 2013; 123: 1416–1423.

26. Shamsipur M, Naseri MT, Babri M. Quantification of candidate prostate cancer metabolite biomarkers in urine using dispersive derivatization liquid-liquid microextraction followed by gas and liquid chromatography-mass spectrometry. J Pharm Biomed Anal 2013; 81–82: 65–75.

27. Natarajan SK, Zhu W, Liang X, et al. Proline dehydrogenase is essential for proline protection against hydrogen peroxide-induced cell death. Free Radic Biol Med 2012; 53: 1181–1191.

28. Cernei N, Zitka O, Skalickova S, et al. Sarkosin v moči pacientů se zhoubným nádorem prostaty. Prakt. Lék. 2012; 92: 444–448.

29. Cernei N, Masarik M, Gumulec J, et al. Determination of sarcosine as possible tumour marker of prostate tumours. J Biochem Tech 2010; 2: S7–S8.

30. Pandhare J, Cooper SK, Phang JM. Proline oxidase, a proapoptotic gene, is induced by troglitazone – Evidence for both peroxisome proliferator-activated receptor gamma-dependent and -independent mechanisms. J Biol Chem 2006; 281: 2044–2052.

31. Pandhare J, Donald SP, Cooper SK, et al. Regulation and function of proline oxidase under nutrient stress. J Cell Biochem 2009; 107: 759–768.

32. Liu Y, Borchert GL, Surazynski A, et al. Proline oxidase activates both intrinsic and extrinsic pathways for apoptosis: the role of ROS/superoxides, NFAT and MEK/ERK signaling. Oncogene 2006; 25: 5640–5647.

33. Liu W, Le A, Hancock C, et al. Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci USA 2012; 109: 8983–8988.

Labels
General practitioner for children and adolescents General practitioner for adults
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#