#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Acute kidney injury in critically ill patients and intestinal dysbio sis


Authors: N. Petejová 1,2;  V. Teplan 1,3,4;  A. Martínek 1;  J. Zadražil 2,5
Authors‘ workplace: Interní a kardiologická klinika LF OU a FN Ostrava 1;  III. interní klinika – nefrologická, revmatologická a endokrinologická, LF UP v Olomouci 2;  Klinické a výzkumné centrum pro střevní záněty, Klinické centrum ISCARE a. s. a 1. LF UK v Praze 3;  Subkatedra nefrologie, IPVZ, Praha 4;  III. interní klinika – nefrologická, revmatologická a endokrinologická, FN Olomouc 5
Published in: Gastroent Hepatol 2024; 78(5): 431-439
Category:
doi: https://doi.org/10.48095/ccgh2024431

Overview

Introduction: Acute kidney injury (AKI) occurs in critically ill patients with significant impact on their morbidity and mortality. The sudden reduction in renal function affects the function of other organs, comprising the intestine, inducing intestinal dysmicrobia, which reciprocally worsens the course of AKI and may also lead to the development of chronic nephropathy. Purpose: Pathophysiology of AKI, sepsis and intestinal dysmicrobia in a critical patient with impact on the development of the disease and other organ systems with possibilities of its positive influence by nutritional measures. Conclusion: Critically ill patients especially in septic status complicated by AKI are prone to complications such as intestinal dysmicrobia, secondary sepsis and immunodeficiency. Treatment of the underlying disease and its complications along with nutritional support helps to improve the clinical outcome of this group of patients.

Keywords:

acute kidney injury – dysmicrobia – intestinal microbiota – sepsis


Sources
1. Rabb H, Pluznick J, Noel S. The Microbiome and Acute Kidney Injury. Nephron 2018; 140 (2): 120–123. doi: 10.1159/000490392.
2. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney inter Suppl 2012; 2: 1–138.
3. Singer M, Deutschman CS, Seymour CW et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315 (8): 801–810. doi: 10.1001/jama.2016.0287.
4. Moriyama K, Nishida O. Targeting Cytokines, Pathogen-Associated Molecular Patterns, and Damage-Associated Molecular Patterns in Sepsis via Blood Purification. Int J Mol Sci 2021; 22 (16): 8882. doi: 10.3390/ijms22168882.
5. Rudd KE, Johnson SC, Agesa KM et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 2020; 395 (10219): 200–211. doi: 10.1016/S0140-6736 (19) 32 989-7.
6. Mankowski RT, Laitano O, Darden D et al. Sepsis-Induced Myopathy and Gut Microbiome Dysbiosis: Mechanistic Links and Therapeutic Targets. Shock 2022; 57 (1): 15–23. doi: 10.1097/SHK.0000000000001843.
7. Nakano D. Septic acute kidney injury: a review of basic research. Clin Exp Nephrol 2020; 24 (12): 1091–1102. doi: 10.1007/s10157-020-01951-3.
8. Pais T, Jorge S, Lopes JA. Acute Kidney Injury in Sepsis. Int J Mol Sci 2024; 25 (11): 5924. doi: 10.3390/ijms25115924.
9. Peerapornratana S, Manrique-Caballero CL, Gómez H et al. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 2019; 96 (5): 1083–1099. doi: 10.1016/j.kint.2019. 05.026.
10. Gilbert JA, Blaser MJ, Caporaso JG et al. Current understanding of the human microbiome. Nat Med 2018; 24 (4): 392–400. doi: 10.1038/nm.4517.
11. Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 2014; 38 (5): 996–1047. doi: 10.1111/1574-6976.12075.
12. Haak BW, Wiersinga WJ. The role of the gut microbiota in sepsis. Lancet Gastroenterol Hepatol 2017; 2 (2): 135–143. doi: 10.1016/ S2468-1253 (16) 30119-4.
13. Chou YT, Kan WC, Shiao CC. Acute Kidney Injury and Gut Dysbiosis: A Narrative Review Focus on Pathophysiology and Treatment. Int J Mol Sci 2022; 23 (7): 3658. doi: 10.3390/ijms23073658.
14. Zhang J, Ankawi G, Sun J et al. Gut-kidney crosstalk in septic acute kidney injury. Crit Care 2018; 22 (1): 117. doi: 10.1186/s13054-018- 2040-y.
15. O‘Connor ME, Prowle JR. Fluid Overload. Crit Care Clin 2015; 31 (4): 803–821. doi: 10.1016/ j.ccc.2015.06.013.
16. Iba T, Levy JH. Derangement of the endothelial glycocalyx in sepsis. J Thromb Haemost 2019; 17 (2): 283–294. doi: 10.1111/jth.14371.
17. Prowle JR, Kirwan CJ, Bellomo R. Fluid management for the prevention and attenuation of acute kidney injury. Nat Rev Nephrol 2014; 10 (1): 37–47. doi: 10.1038/nrneph.2013.232.
18. Lara-Prado JI, Pazos-Pérez F, Méndez-Landa CE et al. Acute Kidney Injury and Organ Dysfunction: What Is the Role of Uremic Toxins? Toxins (Basel) 2021; 13 (8): 551. doi: 10.3390/toxins13080551.
19. Lisowska-Myjak B. Uremic toxins and their effects on multiple organ systems. Nephron Clin Pract 2014; 128 (3–4): 303–311. doi: 10.1159/000369817.
20. Graboski AL, Redinbo MR. Gut-Derived Protein-Bound Uremic Toxins. Toxins (Basel) 2020; 12 (9): 590. doi: 10.3390/toxins12090590.
21. Jiang L, Sun XY, Wang SQ et al. Indoxyl sulphate-TNFa axis mediates uremic encephalopathy in rodent acute kidney injury. Acta Pharmacol Sin 2024; 45 (7): 1406–1424. doi: 10.1038/s41401-024-01251-6.
22. André C, Bennis Y, Titeca-Beauport D et al. Two rapid, accurate liquid chromatography tandem mass spectrometry methods for the quantification of seven uremic toxins: An application for describing their accumulation kinetic profile in a context of acute kidney injury. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152: 122234. doi: 10.1016/j.jchromb.2020.122234.
23. Arrona Cardoza P, Spillane MB, Morales Marroquin E. Alzheimer‘s disease and gut microbiota: does trimethylamine N-oxide (TMAO) play a role? Nutr Rev 2022; 80 (2): 271–281. doi: 10.1093/nutrit/nuab022.
24. Gryp T, Vanholder R, Vaneechoutte M et al. p-Cresyl Sulfate. Toxins (Basel) 2017; 9 (2): 52. doi: 10.3390/toxins9020052.
25. Gupta N, Buffa JA, Roberts AB et al. Targeted Inhibition of Gut Microbial Trimethylamine N-Oxide Production Reduces Renal Tubulointerstitial Fibrosis and Functional Impairment in a Murine Model of Chronic Kidney Disease. Arterioscler Thromb Vasc Biol 2020; 40 (5): 1239–1255. doi: 10.1161/ATVBAHA.120. 314139.
26. Hanna MH, Segar JL, Teesch LM et al. Urinary metabolomic markers of aminoglycoside nephrotoxicity in newborn rats. Pediatr Res 2013; 73 (5): 585–591. doi: 10.1038/pr.2013.34.
27. Krupa A, Krupa MM, Pawlak K. Kynurenine Pathway-An Underestimated Factor Modulating Innate Immunity in Sepsis-Induced Acute Kidney Injury? Cells 2022; 11 (16): 2604. doi: 10.3390/cells11162604.
28. Lee J, Lee J, Kim K et al. Antibiotic-induced intestinal microbiota depletion can attenuate the acute kidney injury to chronic kidney disease transition via NADPH oxidase 2 and trimethylamine-N-oxide inhibition. Kidney Int 2024; 105 (6): 1239–1253. doi: 10.1016/ j.kint.2024.01.040.
29. Lees HJ, Swann JR, Wilson ID et al. Hippurate: the natural history of a mammalian-microbial cometabolite. J Proteome Res 2013; 12 (4): 1527–1546. doi: 10.1021/pr300900b.
30. Lekawanvijit S, Krum H. Cardiorenal syndrome: acute kidney injury secondary to cardiovascular disease and role of protein-bound uraemic toxins. J Physiol 2014; 592 (18): 3969–3983. doi: 10.1113/jphysiol.2014.273078.
31. Niwa T. Indoxyl sulfate is a nephro-vascular toxin. J Ren Nutr 2010; 20 (5 Suppl): S2–S6. doi: 10.1053/j.jrn.2010.05.002.
32. Ren Y, Wang Z, You L et al. Gut-Derived Trimethylamine N-Oxide Promotes CCR2-Mediated Macrophage Infiltration in acute kidney injury. Nephrol Dial Transplant 2024; gfae082. doi: 10.1093/ndt/gfae082.
33. Sun B, Wang X, Liu X et al. Hippuric Acid Promotes Renal Fibrosis by Disrupting Redox Homeostasis via Facilitation of NRF2-KEAP1-CUL3 Interactions in Chronic Kidney Disease. Antioxidants (Basel) 2020; 9 (9): 783. doi: 10.3390/antiox9090783.
34. Verhaar BJH, Prodan A, Nieuwdorp M et al. Gut Microbiota in Hypertension and Atherosclerosis: A Review. Nutrients 2020; 12 (10): 2982. doi: 10.3390/nu12102982.
35. Veldeman L, Vanmassenhove J, Van Biesen W et al. Evolution of protein-bound uremic toxins indoxyl sulphate and p-cresyl sulphate in acute kidney injury. Int Urol Nephrol 2019; 51 (2): 293–302. doi: 10.1007/s11255-018-2056-x.
36. Wee HN, Liu JJ, Ching J et al. The Kynurenine Pathway in Acute Kidney Injury and Chronic Kidney Disease. Am J Nephrol 2021; 52 (10–11): 771–787. doi: 10.1159/000519811.
37. Wei L, Liao P, Wu H et al. Toxicological effects of cinnabar in rats by NMR-based metabolic profiling of urine and serum. Toxicol Appl Pharmacol 2008; 227 (3): 417–429. doi: 10.1016/ j.taap.2007.11.015.
38. Zhang J, Zhu P, Li S et al. From heart failure and kidney dysfunction to cardiorenal syndrome: TMAO may be a bridge. Front Pharmacol 2023; 14: 1291922. doi: 10.3389/fphar.2023.12 91922.
39. Zhang Y, Wang Y, Ke B et al. TMAO: how gut microbiota contributes to heart failure. Transl Res 2021; 228: 109–125. doi: 10.1016/ j.trsl.2020.08.007.
40. Gong J, Noel S, Pluznick JL et al. Gut Microbiota-Kidney Cross-Talk in Acute Kidney Injury. Semin Nephrol 2019; 39 (1): 107–116. doi: 10.1016/j.semnephrol.2018.10.009.
41. Garron ML, Henrissat B. The continuing expansion of CAZymes and their families. Curr Opin Chem Biol 2019; 53: 82–87. doi: 10.1016/ j.cbpa.2019.08.004.
42. Martin-Gallausiaux C, Marinelli L, Blottière HM et al. SCFA: mechanisms and functional importance in the gut. Proc Nutr Soc 2021; 80 (1): 37–49. doi: 10.1017/S00296651200 06916.
43. Pluznick JL. Gut microbiota in renal physiology: focus on short-chain fatty acids and their receptors. Kidney Int 2016; 90 (6): 1191–1198. doi: 10.1016/j.kint.2016.06.033.
44. Liu Y, Li YJ, Loh YW et al. Fiber Derived Microbial Metabolites Prevent Acute Kidney Injury Through G-Protein Coupled Receptors and HDAC Inhibition. Front Cell Dev Biol 2021; 9: 648639. doi: 10.3389/fcell.2021. 648639.
45. Yang W, Yu T, Huang X et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun 2020; 11 (1): 4457. doi: 10.1038/s41467-020-18262-6.
46. Huang W, Zhou L, Guo H et al. The role of short-chain fatty acids in kidney injury induced by gut-derived inflammatory response. Metabolism 2017; 68: 20–30. doi: 10.1016/ j.metabol.2016.11.006.
47. Btaiche IF, Mohammad RA, Alaniz C et al. Amino Acid requirements in critically ill patients with acute kidney injury treated with continuous renal replacement therapy. Pharmacotherapy 2008; 28 (5): 600–613. doi: 10.1592/phco.28.5.600.
48. Chua HR, Puthucheary ZA. Amino Acid Turnover, Protein Metabolism, and Nitrogen Balance in Acute Kidney Injury. In: Ronco C et al (eds). Critical Care Nephrology. Philadelphia: Elsevier 2019: 434–442.
49. Girardot T, Schneider A, Rimmelé T. Blood Purification Techniques for Sepsis and Septic AKI. Semin Nephrol 2019; 39 (5): 505–514. doi: 10.1016/j.semnephrol.2019.06.010.
50. Nadamuni M, Venable AH, Huen SC. When a calorie isn‘t just a calorie: a revised look at nutrition in critically ill patients with sepsis and acute kidney injury. Curr Opin Nephrol Hypertens 2022; 31 (4): 358–366. doi: 10.1097/MNH. 0000000000000801.
51. Chen JH, Chao CT, Huang JW et al. Early elimination of uremic toxin ameliorates AKI-to-CKD transition. Clin Sci (Lond) 2021; 135 (23): 2643–2658. doi: 10.1042/CS20210858.
52. Asai M, Kumakura S, Kikuchi M. Review of the efficacy of AST-120 (KREMEZIN®) on renal function in chronic kidney disease patients. Ren Fail 2019; 41 (1): 47–56. doi: 10.1080/0886022X.2018.1561376.
53. Chávez-Íñiguez JS, Ibarra-Estrada M, Gallardo-González AM et al. Probiotics in septic acute kidney injury, a double blind, randomized control trial. Ren Fail 2023; 45 (2): 2260003. doi: 10.1080/0886022X.2023.2260003.
54. Rossi M, Johnson DW, Morrison M et al. Synbiotics Easing Renal Failure by Improving Gut Microbiology (SYNERGY): A Randomized Trial. Clin J Am Soc Nephrol 2016; 11 (2): 223–231. doi: 10.2215/CJN.05240515.
55. McFarlane C, Krishnasamy R, Stanton T et al. Synbiotics Easing Renal Failure by Improving Gut Microbiology II (SYNERGY II): A Feasibility Randomized Controlled Trial. Nutrients 2021; 13 (12): 4481. doi: 10.3390/nu13124481.
56. Fiaccadori E, Sabatino A, Barazzoni R et al. ESPEN guideline on clinical nutrition in hospitalized patients with acute or chronic kidney disease. Clin Nutr 2021; 40 (4): 1644–1668. doi: 10.1016/j.clnu.2021.01.028.
57. Wang J, Jiang L, Ding S et al. Early Enteral Nutrition and Sepsis-Associated Acute Kidney Injury: A Propensity Score Matched Cohort Study Based on the MIMIC-III Database. Yonsei Med J 2023; 64 (4): 259–268. doi: 10.3349/ymj.2022.0276.
58. Reignier J, Boisramé-Helms J, Brisard L et al. Enteral versus parenteral early nutrition in ventilated adults with shock: a randomised, controlled, multicentre, open-label, parallel- group study (NUTRIREA-2). Lancet 2018; 391 (10116): 133–143. doi: 10.1016/S0140- 6736 (17) 32146-3.
59. Ni W, Jiao X, Zou Het al. Gut microbiome alterations in ICU patients with enteral nutrition-related diarrhea. Front Microbiol 2022; 13: 1051687. doi: 10.3389/fmicb.2022.1051 687.
ORCID autorů
N. Petejová 0000-0002-5174-5876,
V. Teplan 0000-0001-7717-6686,
A. Martínek 0000-0001-7597-3235,
J. Zadražil 0000-0001-8388-3133.
Doručeno/Submitted: 13. 9. 2024
Přijato/Accepted: 9. 10. 2024
Korespondenční autorka
doc. MUDr. Nadežda Petejová, Ph.D., MSc.
Interní a kardiologická klinika
LF OU a FN Ostrava
17. listopadu 1790/5
708 00 Ostrava 8
petejova@seznam.cz
Labels
Paediatric gastroenterology Gastroenterology and hepatology Surgery
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#