Candida glabrata – basic characteristics, virulence, treatment, and resistance
Authors:
D. Eliaš; Y. Gbelská
Authors‘ workplace:
Katedra mikrobiológie a virológie, Prírodovedecká fakulta Univerzity Komenského, Bratislava, Slovenská republika
Published in:
Epidemiol. Mikrobiol. Imunol. 71, 2022, č. 2, s. 118-134
Category:
Review Article
Overview
Fungal infections are currently a serious health concern. Life-threatening conditions that occur mainly in immunocompromised patients are largely caused by representatives of the genus Candida. The most common causative agent is the yeast Candida albicans, but in recent years there has been a significant shift towards Candida glabrata and other so-called non-albicans Candida yeasts (e.g. Candida tropicalis or Candida parapsilosis). Invasive infections caused by the multidrug-resistant yeast Candida auris are associated with high mortality. There are several differences between C. glabrata and other causative agents of candidiasis in biological characteristics and virulence factors. The innate increased resistance to azoles along with the ability to rapidly acquire resistance to other groups of antifungal agents is a dangerous combination which makes it difficult to manage Candida infections. A better understanding of the virulence factors and mechanisms of resistance to antifungal agents can benefit the management of Candida infections. Equally important is the search for new target sites for antifungal therapy. The present work briefly summarizes the existing knowledge in this area.
Keywords:
biofilm – virulence – Candida glabrata – antifungal resistance – ergosterol
Sources
1. Anderson HW. Yeast-like fungi of the human intestinal tract. J Infect Dis, 1917;21(4):341–354.
2. Angoulvant A, Guitard J, Hennequin C. Old and new pathogenic Nakaseomyces species: epidemiology, biology, identification, pathogenicity and antifungal resistance. FEMS Yeast Res, 2016;16(2):1–13.
3. Kurtzman CP. Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res, 2003;4(3):233–245.
4. Papon N, Courdavault V, Clastre M, et al. Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm. PLoS Pathog, 2013;9(9):1–4.
5. Spivak ES, Hanson KE. Candida auris: an emerging fungal pathogen. J Clin Microbiol, 2018;56(2):1–10.
6. Gabaldón T, Carreté L. The birth of a deadly yeast: tracing the evolutionary emergence of virulence traits in Candida glabrata. FEMS Yeast Res, 2016;16(2):1–9.
7. Tam P, Gee K, Piechocinski M, et al. Candida glabrata, friend and foe. J Fungi (Basel), 2015;1(2):277–292.
8. Silva S, Negri M, Henriques M, et al. Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev, 2012;36(2):288–305.
9. Csank C, Haynes K. Candida glabrata displays pseudohyphal growth. FEMS Microbiol Lett, 2000;189(1):115–120.
10. Sasani E, Khodavaisy S, Agha Kuchak Afshari S, et al. Pseudohyphae formation in Candida glabrata due to CO2 exposure. Curr Med Mycol, 2016;2(4):49–52.
11. Osei Sekyere J. Candida auris: A systematic review and meta- analysis of current updates on an emerging multidrug-resistant pathogen. Microbiologyopen, 2018;7(4):1–29.
12. Rodrigues CF, Silva S, Henriques M. Candida glabrata: a review of its features and resistance. Eur J Clin Microbiol Infect Dis, 2014;33(5):673–88.
13. Jeffery-Smith A, Taori SK, Schelenz S, et al. Candida auris: a review of the literature. Clin Microbiol Rev, 2017;31(1):1–18.
14. Lachke SA, Joly S, Daniels K et al. Phenotypic switching and filamentation in Candida glabrata. Microbiology, 2002;148(9):2661– 2674.
15. Brockert PJ, Lachke SA, Srikantha T, et al. Phenotypic switching and mating type switching of Candida glabrata at sites of colonization. Infect Immun, 2003;71(12):7109–7118.
16. Kumar K, Askari F, Sahu MS, et al. Candida glabrata: A lot more than meets the eye. Microorganisms, 2019;7(2):39–61.
17. Dujon B, Sherman D, Fischer G, et al. Genome evolution in yeasts. Nature, 2004;430(6995):35–44.
18. Bolotin-Fukuhara M, Fairhead C. Candida glabrata: a deadly companion? Yeast, 2014;31(8):279–288.
19. Carreté L, Ksiezopolska E, Pegueroles C, et al. Patterns of genomic variation in the opportunistic pathogen Candida glabrata suggest the existence of mating and a secondary association with humans. Curr Biol, 2018;28(1):15–27.
20. Gabaldón T, Fairhead C. Genomes shed light on the secret life of Candida glabrata: not so asexual, not so commensal. Curr Genet, 2019;65(1):93–98.
21. Gabaldón T, Gómez-Molero E, Bader O. Molecular typing of Candida glabrata. Mycopathologia, 2020;185(5):755–764.
22. Ahmad KM, Kokošar J, Guo X, et al. Genome structure and dynamics of the yeast pathogen Candida glabrata. FEMS Yeast Res, 2014;14(4):529–535.
23. Koszul R, Malpertuy A, Frangeul L, et al. The complete mitochondrial genome sequence of the pathogenic yeast Candida (Torulopsis) glabrata. FEBS Lett, 2003;534(1–3):39–48.
24. Morio F, Lombardi L, Butler G. The CRISPR toolbox in medical mycology: state of the art and perspectives. PLoS Pathog, 2020;16(1):1–21.
25. Kabir MA, Ahmad Z. Candida infections and their prevention. ISRN Prev Med, 2012;2013:1–13.
26. Schabereiter-Gurtner C, Selitsch B, Rotter ML, et al. Development of novel real-time PCR assays for detection and differentiation of eleven medically important Aspergillus and Candida species in clinical specimens. J Clin Microbiol, 2007;45(3):906– 914.
27. Zhang J, Hung GC, Nagamine K, et al. Development of Candida- specific Real-Time PCR assays for the detection and identification of eight medically important Candida species. Microbiol Insights, 2016;9(9):21–28.
28. Reyes-Montes MDR, Acosta-Altamirano G, Duarte-Escalante E, et al. Usefulness of a multiplex PCR for the rapid identification of Candida glabrata species complex in Mexican clinical isolates. Rev Inst Med Trop Sao Paulo, 2019;61(9):37–44.
29. Taei M, Chadeganipour M, Mohammadi R. An alarming rise of non-albicans Candida species and uncommon yeasts in the clinical samples; a combination of various molecular techniques for identification of etiologic agents. BMC Res Notes, 2019;12(1):779–786.
30. Mirhendi H, Makimura K, Khoramizadeh M, et al. A one-enzyme PCR-RFLP assay for identification of six medically important Candida species. Nihon Ishinkin Gakkai Zasshi, 2006;47(3):225– 229.
31. Rivero-Menendez O, Navarro-Rodriguez P, Bernal-Martinez L, et al. Clinical and laboratory development of echinocandin resistance in Candida glabrata: molecular characterization. Front Microbiol, 2019;10:1–12.
32. Dodgson AR, Pujol C, Denning DW, et al. Multilocus sequence typing of Candida glabrata reveals geographically enriched clades. J Clin Microbiol, 2003;41(12):5709–5717.
33. Garcia-Hermoso D, Desnos-Ollivier M, Bretagne S. Typing Candida species using microsatellite length polymorphism and multilocus sequence typing. Methods Mol Biol, 2016;1356:199–214.
34. Oviaño M, Rodríguez-Sánchez B. MALDI-TOF mass spectrometry in the 21st century clinical microbiology laboratory. Enferm Infecc Microbiol Clin, 2021;39(4):192–200.
35. Posteraro B, De Carolis E, Vella A, et al. MALDI-TOF mass spectrometry in the clinical mycology laboratory: identification of fungi and beyond. Expert Rev Proteomics, 2013;10(2):151–164.
36. Bellanger AP, Gbaguidi-Haore H, Liapis E, et al. Rapid identification of Candida sp. by MALDI-TOF mass spectrometry subsequent to short-term incubation on a solid medium. APMIS, 2019;127(4):217–221.
37. Chalupová J, Raus M, Sedlářová M, et al. Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnol Adv, 2014;32(1):230–241.
38. Clark AE, Kaleta EJ, Arora A, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev, 2013;26(3):547–603.
39. Patel R. MALDI-TOF MS for the diagnosis of infectious diseases. Clin Chem, 2015;61(1):100–111.
40. Galocha M, Pais P, Cavalheiro M, et al. Divergent approaches to virulence in C. albicans and C. glabrata: two sides of the same coin. Int J Mol Sci, 2019;20(9):2345–2370.
41. Kullberg BJ, Arendrup MC. Invasive candidiasis. N Engl J Med, 2015;373(15):1445–1456.
42. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev, 2007;20(1):133–163.
43. Kothalawala M, Jayaweera JAAS, Arunan S, et al. The emergence of non-albicans candidemia and evaluation of HiChrome Candida differential agar and VITEK2 YST® platform for differentiation of Candida bloodstream isolates in teaching hospital Kandy, Sri Lanka. BMC Microbiol, 2019;19(1):136–146.
44. Healey KR, Perlin DS. Fungal eesistance to echinocandins and the MDR phenomenon in Candida glabrata. J Fungi (Basel), 2018;4(3):105–119.
45. Álvaro-Meca A, Jensen J, Micheloud D, et al. Rate of candidiasis among HIV-infected children in Spain in the era of highly active antiretroviral therapy (1997–2008). BMC Infect Dis, 2013;13(1):115–123.
46. Marukutira T, Huprikar S, Azie N, et al. Clinical characteristics and outcomes in 303 HIV-infected patients with invasive fungal infections: data from the prospective antifungal therapy alliance registry, a multicenter, observational study. HIV AIDS (Auckl), 2014;6:39–47.
47. Li X, Lei L, Tan D, et al. Oropharyngeal Candida colonization in human immunodeficiency virus infected patients. APMIS, 2013;121(5):375–402.
48. Anwar KP, Malik A, Subhan KH. Profile of candidiasis in HIV infected patients. Iran J Microbiol, 2012;4(4):204–209.
49. Cassone A, Cauda R. Candida and candidiasis in HIV-infected patients: where commensalism, opportunistic behavior and frank pathogenicity lose their borders. AIDS, 2012;26(12):1457– 1472.
50. Tamai IA, Pakbin B, Fasaei BN. Genetic diversity and antifungal susceptibility of Candida albicans isolates from Iranian HIV-infected patients with oral candidiasis. BMC Res Notes, 2021;14(1):93–100.
51. Mohamed AA, Lu XL, Mounmin FA. Diagnosis and treatment of esophageal candidiasis: current updates. Can J Gastroenterol Hepatol, 2019;2019(9):1–6.
52. Achkar JM, Fries BC. Candida infections of the genitourinary tract. Clin Microbiol Rev, 2010;23(2):253–273.
53. Gonçalves B, Ferreira C, Alves CT, et al. Vulvovaginal candidiasis: epidemiology, microbiology and risk factors. Crit Rev Microbiol, 2016;42(6):905–927.
54. Lim CS-Y, Rosli R, Seow HF, et al. Candida and invasive candidiasis: back to basics. Eur J Clin Microbiol Infect Dis, 2012;31(1):21– 31.
55. Pfaller MA, Messer SA, Moet GJ, et al. Candida bloodstream infections: comparison of species distribution and resistance to echinocandin and azole antifungal agents in intensive care unit (ICU) and non-ICU settings in the SENTRY antimicrobial surveillance program (2008–2009). Int J Antimicrob Agents, 2011;38(1):65–69.
56. Montagna MT, Lovero G, Borghi E, et al. Candidemia in intensive care unit: a nationwide prospective observational survey (GISIA-3 study) and review of the European literature from 2000 through 2013. Eur Rev Med Pharmacol Sci, 2014;18(5):661–674.
57. Diekema D, Arbefeville S, Boyken L, et al. The changing epidemiology of healthcare-associated candidemia over three decades. Diagn Microbiol Infect Dis, 2012;73(1):45–48.
58. Guinea J. Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect, 2014;20(6):5–10.
59. Chakrabarti A, Sood P, Rudramurthy SM, et al. Incidence, characteristics and outcome of ICU-acquired candidemia in India. Intensive Care Med, 2014;41(2):285–295.
60. Tan BH, Chakrabarti A, Li RY, et al. Incidence and species distribution of candidaemia in Asia: a laboratory-based surveillance study. Clin Microbiol Infect, 2015;21(10):946–953.
61. Arendrup MC, Patterson TF. Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis, 2017;216(3):445–451.
62. Bongomin F, Gago S, Oladele RO, et al. Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi (Basel), 2017;3(4):57–86.
63. Koehler P, Stecher M, Cornely OA, et al. Morbidity and mortality of candidaemia in Europe: an epidemiologic meta-analysis. Clin Microbiol Infect, 2019;25(10):1200–1212.
64. Lamoth F, Lockhart SR, Berkow EL, et al. Changes in the epidemiological landscape of invasive candidiasis. J Antimicrob Chemother, 2018;73(1):4–13.
65. Vasilyeva NV, Raush ER, Rudneva MV, et al. Etiology of invasive candidosis agents in Russia: a multicenter epidemiological survey. Front Med, 2018;12(1):84–91.
66. Cleveland AA, Farley MM, Harrison LH, et al. Changes in incidence and antifungal drug resistance in candidemia: results from population-based laboratory surveillance in Atlanta and Baltimore, 2008-2011. Clin Infect Dis, 2012;55(10):1352–1361.
67. Lockhart SR, Iqbal N, Cleveland AA, et al. Species identification and antifungal susceptibility testing of Candida bloodstream isolates from population-based surveillance studies in two U.S. cities from 2008 to 2011. J Clin Microbiol, 2012;50(11):3435– 3442.
68. Lockhart SR. Current epidemiology of Candida Infection. Clin Microbiol Newsl, 2014;36(17):131–136.
69. Cleveland AA, Harrison LH, Farley MM, et al. Declining incidence of candidemia and the shifting epidemiology of Candida resistance in two US metropolitan areas, 2008–2013: results from population-based surveillance. PLoS One, 2015;10(3):1–12.
70. Wang H, Xu YC, Hsueh PR. Epidemiology of candidemia and antifungal susceptibility in invasive Candida species in the Asia-Pacific region. Future Microbiol, 2016;11(11):1461–1477.
71. Ghazi S, Rafei R, Osman M, et al. The epidemiology of Candida species in the Middle East and North Africa. J Mycol Med, 2019;29(3):245–252.
72. Pfaller MA, Diekema DJ, Turnidge JD, et al. Twenty years of the SENTRY antifungal surveillance program: results for Candida species from 1997–2016. Open Forum Infect Dis, 2019;6(1):79– 94.
73. Ruiz Gaitán AC, Moret A, López Hontangas JL, et al. Nosocomial fungemia by Candida auris: First four reported cases in continental Europe. Rev Iberoam Micol, 2017;34(1):23–27.
74. Kohlenberg A, Struelens MJ, Monnet DL, et al. Candida auris: epidemiological situation, laboratory capacity and preparedness in European Union and European Economic Area countries, 2013 to 2017. Euro Surveill, 2018;23(13):18–136.
75. Saris K, Meis JF, Voss A. Candida auris. Curr Opin Infect Dis, 2018;31(4):334–340.
76. Mathur P, Hasan F, Singh PK, et al. Five-year profile of candidaemia at an Indian trauma centre: high rates of Candida auris blood stream infections. Mycoses, 2018;61(9):674–680.
77. Govender NP, Magobo RE, Mpembe R, et al. Candida auris in South Africa, 2012–2016. Emerg Infect Dis, 2018;24(11):2036– 2040.
78. Drgoňa L. Diagnostika a liečba invazívnych mykóz u hematoonkologických pacientov. Onkologie, 2009;3(4):231–234.
79. Kocmanová I, Drgoňa L, Ráčil Z, et al. Invazivní kvasinkové infekce na vybraných hematoonkologických oddĕleních České a Slovenské republiky – mikrobiologické výsledky projektu CAN CELL. Klin Mikrobiol Infekc Lek, 2011;17(1):5–10.
80. Kocmanová I, Lysková P, Chrenkova V, et al. Nosocomial candidemia in the Czech Republic in 2012–2015: results of a microbiological multicentre study. Epidemiol Mikrobiol Imunol, 2018;67(1):3–10.
81. Pappas P, Lionakis M, Arendrup M, et al. Invasive candidiasis. Nat Rev Dis Primers, 2018;4(1):1–20.
82. Antinori S, Milazzo L, Sollima S, et al. Candidemia and invasive candidiasis in adults: a narrative review. Eur J Intern Med, 2016;34:21–28.
83. Staniszewska M. Virulence factors in Candida species. Curr Protein Pept Sci, 2020;21(3):313–323.
84. Perlroth J, Choi B, Spellberg B. Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol, 2007;45(4):321–346.
85. Tati S, Davidow P, McCall A, et al. Candida glabrata binding to Candida albicans hyphae enables its development in oropharyngeal candidiasis. PLoS Pathog, 2016;12(3):1–21.
86. Tsay S, Williams SR, Benedict K, et al. A tale of two healthcare-associated infections: Clostridium difficile coinfection among patients with candidemia. Clin Infect Dis, 2018;68(4):676–679.
87. Li L, Kashleva H, Dongari-Bagtzoglou A. Cytotoxic and cytokine- inducing properties of Candida glabrata in single and mixed oral infection models. Microb Pathog, 2007;42(4):138–147.
88. Bairwa G, Kaur RA. Novel role for a glycosylphosphatidylinositol- anchored aspartyl protease, CgYps1, in the regulation of pH homeostasis in Candida glabrata. Mol Microbiol, 2011;79(4):900– 913.
89. Bairwa G, Rasheed M, Taigwal R, et al. GPI (glycosylphosphatidylinositol)- linked aspartyl proteases regulate vacuole homoeostasis in Candida glabrata. Biochem J, 2014;458(2):323–334.
90. Kaur R, Ma B, Cormack BP. A family of glycosylphosphatidylinositol- linked aspartyl proteases is required for virulence of Candida glabrata. Proc Natl Acad Sci USA, 2007;104(18):7628–7633.
91. Rasheed M, Battu A, Kaur R. Aspartyl proteases in Candida glabrata are required for suppression of the host innate immune response. J Biol Chem, 2018;293(17):6410–6433.
92. Seider K, Brunke S, Schild L, et al. The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J Immunol, 2011;187(6):3072–3086.
93. Quintin J, Asmar J, Matskevich AA, et al. The Drosophila toll pathway controls but does not clear Candida glabrata infections. J Immunol, 2013;190(6):2818–2827.
94. Fatahinia M, Halvaeezadeh M, Rezaei-Matehkolaei A. Comparison of enzymatic activities in different Candida species isolated from women with vulvovaginitis. J Mycol Med, 2017;27(2):188– 194.
95. Sharma Y, Chumber S, Kaur M. Studying the prevalence, species distribution, and detection of in vitro production of phospholipase from Candida isolated from cases of invasive candidiasis. J Glob Infect Dis, 2017;9(1):8–11.
96. Rossoni RD, Barbosa JO, Vilela SFG, et al. Correlation of phospholipase and proteinase production of Candida with in vivo pathogenicity in Galleria mellonella. Braz J Oral Sci, 2013;12(3):199– 204.
97. De Riceto ÉBM, de Menezes RP, Penatti MPA, et al. Enzymatic and hemolytic activity in different Candida species. Rev Iberoam Micol, 2015;32(2):79–82.
98. Canela HMS, Cardoso B, Vitali LH, et al. Prevalence, virulence factors and antifungal susceptibility of Candida spp. isolated from bloodstream infections in a tertiary care hospital in Brazil. Mycoses, 2018;61(1):11–21.
99. Timmermans B, De Las Peñas A, Castaño I, et al. Adhesins in Candida glabrata. J Fungi (Basel), 2018;4(2):60–76.
100. Netea MG, Joosten LAB, Van Der Meer JWM, et al. Immune defense against Candida fungal infections. Nat Rev Immunol, 2015;15(10):630–642.
101. Naglik, JR. Candida Immunity. New J Sci, 2014;2014:1–27.
102. Goyal S, Castrillón-Betancur JC, Klaile E, et al. The interaction of human pathogenic fungi with C-type lectin receptors. Front Immunol, 2018;9:1261–1286.
103. Lowman DW, Greene RR, Bearden DW, et al. Novel structural features in Candida albicans hyphal glucan provide a basis for differential innate immune recognition of hyphae versus yeast. J Biol Chem, 2014;289(6):3432–3443.
104. Ifrim DC, Bain JM, Reid DM, et al. Role of dectin-2 for host defense against systemic infection with Candida glabrata. Infect Immun, 2014;82(3):1064–1073.
105. Qin Y, Zhang L, Xu Z, et al. Innate immune cell response upon Candida albicans infection. Virulence, 2016;7(5):512–526.
106. Desai JV, Lionakis MS. The role of neutrophils in host defense against invasive fungal infections. Curr Clin Microbiol Rep, 2018;5(3):181–189.
107. Amulic B, Cazalet C, Hayes GL, et al. Neutrophil function: from mechanisms to disease. Annu Rev Immunol, 2012;30(1):459–489.
108. Cheng SC, Sprong T, Joosten LA, et al. Complement plays a central role in Candida albicans-induced cytokine production by human PBMCs. Eur J Immunol, 2012;42(4):993–1004.
109. Eyerich S, Wagener J, Wenzel V, et al. IL-22 and TNF-α represent a key cytokine combination for epidermal integrity during infection with Candida albicans. Eur J Immunol, 2011;41(7):1894– 1901.
110. Zielinski CE, Mele F, Aschenbrenner D, et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature, 2012;484(7395):514–518.
111. Chen SM, Shen H, Zhang T, et al. Dectin-1 plays an important role in host defense against systemic Candida glabrata infection. Virulence, 2017;8(8):1643–1656.
112. Chew SY, Chee WJY, Than LTL. The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies of Candida glabrata: perspectives from Candida albicans and Saccharomyces cerevisiae. J Biomed Sci, 2019;26(1):52–62.
113. Chew SY, Ho KL, Cheah YK, et al. Physiologically relevant alternative carbon sources modulate biofilm formation, cell wall architecture, and the stress and antifungal resistance of Candida glabrata. Int J Mol Sci, 2019;20(13):3172–3185.
114. Roetzer A, Gratz N, Kovarik P, et al. Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiol, 2010;12(2):199–216.
115. Rai MN, Balusu S, Gorityala N, et al. Functional genomic analysis of Candida glabrata-macrophage interaction: role of chromatin remodeling in virulence. PLoS Pathog, 2012;8(8):1–16.
116. Roetzer A, Gregori C, Jennings AM, et al. Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors. Mol Microbiol, 2008;69(3):603–620.
117. Briones-Martin-Del-Campo M, Orta-Zavalza E, Cañas-Villamar I, et al. The superoxide dismutases of Candida glabrata protect against oxidative damage and are required for lysine biosynthesis, DNA integrity and chronological life survival. Microbiology, 2015;161(2):300–310.
118. Vale-Silva LA, Sanglard D. Tipping the balance both ways: drug resistance and virulence in Candida glabrata. FEMS Yeast Res, 2015;15(4):1–8.
119. Briones-Martin-Del-Campo M, Orta-Zavalza E, Juarez-Cepeda J, et al. The oxidative stress response of the opportunistic fungal pathogen Candida glabrata. Rev Iberoam Micol, 2014;31(1):67– 71.
120. de Groot PW, Bader O, de Boer AD, et al. Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot Cell, 2013;12(4):470–481.
121. Cavalheiro M, Teixeira MC. Candida Biofilms: threats, challenges, and promising strategies. Front Med, 2018;5:1–21.
122. Modrezewka B, Kurnatowski P. Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features. Ann Parasitol, 2015;61(1):3–9.
123. de Groot PWJ, Kraneveld EA, Yin QY, et al. The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell, 2008;7(11):1951– 1964.
124. Rodrigues CF, Rodrigues ME, Silva S, et al. Candida glabrata biofilms: how far have we come? J Fungi (Basel), 2017;3(1):11–44.
125. Alves R, Kastora SL, Gomes-Gonçalves A, et al. Transcriptional responses of Candida glabrata biofilm cells to fluconazole are modulated by the carbon source. npj Biofilms Microbiomes, 2020;6(1):1–11.
126. Gallegos-García V, Pan SJ, Juárez-Cepeda J, et al. A novel downstream regulatory element cooperates with the silencing machinery to repress EPA1 expression in Candida glabrata. Genetics, 2012;190(4):1285–1297.
127. Kuhn DM, Vyas VK. The Candida glabrata adhesin Epa1p causes adhesion, phagocytosis, and cytokine secretion by innate immune cells. FEMS Yeast Res, 2012;12(4):398–414.
128. Domergue R. Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science, 2005;308(5723):866–870.
129. Zupancic ML, Frieman M, Smith D, et al. Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol Microbiol, 2008;68(3):547–559.
130. Silva S, Rodrigues CF, Araújo D, et al. Candida species biofilms antifungal resistance. J Fungi (Basel), 2017;3(1):8–25.
131. d‘Enfert C, Janbon G. Biofilm formation in Candida glabrata: What have we learnt from functional genomics approaches? FEMS Yeast Res, 2016;16(1):1–13.
132. Kucharíková S, Tournu H, Lagrou K, et al. Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin. J Med Microbiol, 2011;60(9):1261–1269.
133. Riera M, Mogensen E, d‘Enfert C, et al. New regulators of biofilm development in Candida glabrata. Res Microbiol, 2012;163(4):297–307.
134. Scorzoni L, de Paula E Silva AC, Marcos CM, et al. Antifungal therapy: new advances in the understanding and treatment of mycosis. Front Microbiol, 2017;8:1–23.
135. Bhattacharya S, Sae-Tia S, Fries BC. Candidiasis and mechanisms of antifungal resistance. Antibiotics, 2020;9(6):312–331.
136. Pais P, Galocha M, Viana R, et al. Microevolution of the pathogenic yeasts Candida albicans and Candida glabrata during antifungal therapy and host infection. Microb Cell, 2019;6(3):142–159.
137. Whaley SG, Rogers PD. Azole resistance in Candida glabrata. Curr Infect Dis Rep, 2016;18(12):41–51.
138. Bhattacharya S, Esquivel BD, White TC. Overexpression or deletion of ergosterol biosynthesis genes alters doubling time, response to stress agents, and drug susceptibility in Saccharomyces cerevisiae. mBio, 2018;9(4):1–14.
139. Delattin N, Cammue BP, Thevissen K. Reactive oxygen species- inducing antifungal agents and their activity against fungal biofilms. Future Med Chem, 2014;6(1):77–90.
140. Arendrup MC. Update on antifungal resistance in Aspergillus and Candida. Clin Microbiol Infect, 2014;20(6):42–48.
141. Prasad R, Singh A. Lipids of Candida albicans and their role in multidrug resistance. Curr Genet, 2013;59(4):243–250.
142. Redhu AK, Shah AH, Prasad R. MFS transporters of Candida species and their role in clinical drug resistance. FEMS Yeast Res, 2016;16(4):1–12.
143. Caudle KE, Barker KS, Wiederhold NP, et al. Genomewide expression profile analysis of the Candida glabrata Pdr1 regulon. Eukaryot Cell, 2011;10(3):373–383.
144. Costa C, Dias PJ, Sá-Correia I, et al. MFS multidrug transporters in pathogenic fungi: do they have real clinical impact? Front Physiol, 2014;5(197):197–205.
145. Costa C, Ribeiro J, Miranda IM, et al. Clotrimazole drug resistance in Candida glabrata clinical isolates correlates with increased expression of the drug:H(+) antiporters CgAqr1, CgTpo1_1, CgTpo3, and CgQdr2. Front Microbiol, 2016;7(74):526–537.
146. Moye-Rowley WS. Multiple interfaces control activity of the Candida glabrata Pdr1 transcription factor mediating azole drug resistance. Curr Genet, 2019;65(1):103–108.
147. Vu BG, Thomas GH, Moye-Rowley WS. Evidence that ergosterol biosynthesis modulates activity of the Pdr1 transcription factor in Candida glabrata. mBio, 2019;10(3):1–20.
148. Peng Y, Dong D, Jiang C, et al. Relationship between respiration deficiency and azole resistance in clinical Candida glabrata. FEMS Yeast Res, 2012;12(6):719–727.
149. Ferrari S, Sanguinetti M, De Bernardis F, et al. Loss of mitochondrial functions associated with azole resistance in Candida glabrata results in enhanced virulence in mice. Antimicrob Agents Chemother, 2011;55(5):1852–1860.
150. Nagi M, Nakayama H, Tanabe K, et al. Transcription factors CgUPC2A and CgUPC2B regulate ergosterol biosynthetic genes in Candida glabrata. Genes Cells, 2010;16(1):80–89.
151. Whaley SG, Caudle KE, Vermitsky JP, et al. UPC2A is required for high-level azole antifungal resistance in Candida glabrata. Antimicrob Agents Chemother, 2014;58(8):4543–4554.
152. Culakova H, Dzugasova V, Valencikova R, et al. Stress response and expression of fluconazole resistance associated genes in the pathogenic yeast Candida glabrata deleted in the CgPDR16 gene. Microbiol Res, 2015;174:17–23.
153. Vandeputte P, Ferrari S, Coste A. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol, 2012;2012(3):1–26.
154. Howard KC , Dennis EK , Watt DS, et al. A comprehensive overview of the medicinal chemistry of antifungal drugs: perspectives and promise. Chem Soc Rev, 2020;49(8):2426–2480.
155. Kołaczkowska A, Kołaczkowski M. Drug resistance mechanisms and their regulation in non-albicans Candida species. J Antimicrob Chemother, 2016;71(6):1438–1450.
156. Van Daele R, Spriet I, Wauters J, et al. Antifungal drugs: What brings the future? Med Mycol, 2019;57(3):328–343.
157. Vandeputte P, Tronchin G, Bergès T, et al. Reduced susceptibility to polyenes associated with a missense mutation in the ERG6 gene in a clinical isolate of Candida glabrata with pseudohyphal growth. Antimicrob Agents Chemother, 2007;51(3):982–990.
158. Vandeputte P, Tronchin G, Larcher G, et al. A nonsense mutation in the ERG6 gene leads to reduced susceptibility to polyenes in a clinical isolate of Candida glabrata. Antimicrob Agents Chemother, 2008;52(10):3701–3709.
159. Ahmad S, Joseph L, Parker JE, et al. ERG6 and ERG2 are major targets conferring reduced susceptibility to amphotericin B in clinical Candida glabrata isolates in Kuwait. Antimicrob Agents Chemother, 2019;63(2):1–12.
160. Hull CM, Bader O, Parker JE, et al. Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2. Antimicrob Agents Chemother, 2012;56(12):6417–6421.
161. Pappas PG, Kauffman CA, Andes DR, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis, 2016;62(4):1–50.
162. Hüttel W. Echinocandins: structural diversity, biosynthesis, and development of antimycotics. Appl Microbiol Biotechnol, 2021;105(1):55–66.
163. Papaspyridi LM, Zerva A, Topakas E. Biocatalytic synthesis of fungal β-glucans. Catalysts, 2018;8(7):274–297.
164. Katiyar SK, Alastruey-Izquierdo A, Healey KR, et al. Fks1 and Fks2 are functionally redundant but differentially regulated in Candida glabrata: implications for echinocandin resistance. Antimicrob Agents Chemother, 2012;56(12):6304–6309.
165. Pham CD, Iqbal N, Bolden CB, et al. Role of FKS mutations in Candida glabrata: MIC values, echinocandin resistance, and multidrug resistance. Antimicrob Agents Chemother, 2014;58(8):4690– 4696.
166. Pristov KE, Ghannoum MA. Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect, 2019;25(7):792– 798.
167. Fisher JF, Sobel JD, Kauffman CA, et al. Candida urinary tract infections- treatment. Clin Infect Dis, 2011;52(6):457–466.
168. Vandeputte P, Pineau L, Larcher G, et al. Molecular mechanisms of resistance to 5-fluorocytosine in laboratory mutants of Candida glabrata. Mycopathologia, 2011;171(1):11–21.
169. Castanheira M, Deshpande LM, Davis AP, et al. Monitoring antifungal resistance in a global collection of invasive yeasts and molds: application of CLSI epidemiological cutoff values and whole-genome sequencing analysis for detection of azole resistance in Candida albicans. Antimicrob Agents Chemother, 2017;61(10):1–20.
170. Farmakiotis D, Kontoyiannis DP. Epidemiology of antifungal resistance in human pathogenic yeasts: Current viewpoint and practical recommendations for management. Int J Antimicrob Agents, 2017;50(3):318–324.
171. Alexander BD, Johnson MD, Pfeiffer CD, et al. Increasing echinocandin resistance in Candida glabrata: Clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis, 2013;56(12):1724–1732.
172. Farmakiotis D, Tarrand JJ, Kontoyiannis DP. Drug-resistant Candida glabrata infection in cancer patients. Emerg Infect Dis, 2014;20(11):1833–1840.
173. Perlin D.S. Mechanisms of echinocandin antifungal drug resistance. Ann N Y Acad Sci, 2015;1354(1):1–11.
174. Bhattacharya S, Sobel JD, White TC. A combination fluorescence assay demonstrates increased efflux pump activity as a resistance mechanism in azole-resistant vaginal Candida albicans isolates. Antimicrob Agents Chemother, 2016;60(10):5858–5866.
175. Lohberger A, Coste AT, Sanglard D. Distinct roles of Candida albicans drug resistance transcription factors TAC1, MRR1, and UPC2 in virulence. Eukaryot Cell, 2014;13(1):127–142.
176. Arastehfar A, Gabaldón T, Garcia-Rubio R, et al. Drug-resistant fungi: an emerging challenge threatening our limited antifungal armamentarium. Antibiotics (Basel), 2020;9(12):877–906.
177. Zhang L, Xiao M, Watts MR, et al. Development of fluconazole resistance in a series of Candida parapsilosis isolates from a persistent candidemia patient with prolonged antifungal therapy. BMC Infect Dis, 2015;15(1):340–347.
178. Berkow EL, Lockhart SR. Fluconazole resistance in Candida species: a current perspective. Infect Drug Resist, 2017;10:237–245.
179. Ksiezopolska E, Gabaldón T. Evolutionary emergence of drug resistance in Candida opportunistic pathogens. Genes (Basel), 2018;9(9):461–486.
180. Branco J, Ola M, Silva RM, et al. Impact of ERG3 mutations and expression of ergosterol genes controlled by UPC2 and NDT80 in Candida parapsilosis azole resistance. Clin Microbiol Infect, 2017;23(8):575–583.
181. Whaley SG, Berkow EL, Rybak JM, et al. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front Microbiol, 2017;7:1–12.
182. Perlin DS. Echinocandin resistance in Candida. Clin Infect Dis, 2015;61(6):612–617.
183. Lepak AJ, Zhao M, Berkow EL, et al. Pharmacodynamic optimization for treatment of invasive Candida auris infection. Antimicrob Agents Chemother, 2017;61(8):1–5.
184. Chatterjee S, Alampalli SV, Nageshan RK, et al. Draft genome of a commonly misdiagnosed multidrug resistant pathogen Candida auris. BMC Genomics, 2015;16(1):686–702.
185. Lockhart SR, Etienne KA, Vallabhaneni S, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis, 2017;64(2):134–140.
186. ElBaradei A. A decade after the emergence of Candida auris: what do we know? Eur J Clin Microbiol Infect Dis, 2020;39(9):1617– 1627.
187. Zheng YH, Ma YY, Ding Y, et al. An insight into new strategies to combat antifungal drug resistance. Drug Des Devel Ther, 2018;12:3807–3816.
188. Jordá T, Puig S. Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae. Genes (Basel), 2020;11(7):795–813.
189. Pan J, Hu C, Yu JH. Lipid biosynthesis as an antifungal target. J Fungi (Basel), 2018;4(2):50–63.
190. Lv QZ, Yan L, Jiang YY. The synthesis, regulation, and functions of sterols in Candida albicans: well-known but still lots to learn. Virulence, 2016;7(6):649–659.
191. Hu Z, He B, Ma L, et al. Recent advances in ergosterol biosynthesis and regulation mechanisms in Saccharomyces cerevisiae. Indian J Microbiol, 2017;57(3):270–277.
192. Sokolov SS, Trushina NI, Severin FF, et al. Ergosterol turnover in yeast: an interplay between biosynthesis and transport. Biochemistry, 2019;84(4):346–357.
193. Zavrel M, Hoot SJ, White TC. Comparison of sterol import under aerobic and anaerobic conditions in three fungal species, Candida albicans, Candida glabrata, and Saccharomyces cerevisiae. Eukaryot Cell, 2013;12(5):725–738.
194. Kodedová M, Sychrová H. Changes in the sterol composition of the plasma membrane affect membrane potential, salt tolerance and the activity of multidrug resistance pumps in Saccharomyces cerevisiae. PLoS One, 2015;10(9):1–19.
195. Konecna A, Toth Hervay N, Valachovic M, et al. ERG6 gene deletion modifies Kluyveromyces lactis susceptibility to various growth inhibitors. Yeast, 2016;33(12):621–632.
Labels
Hygiene and epidemiology Medical virology Clinical microbiologyArticle was published in
Epidemiology, Microbiology, Immunology
2022 Issue 2
Most read in this issue
- Candida glabrata – basic characteristics, virulence, treatment, and resistance
- Incidence of tuberculosis among HIV-positive persons in the Czech Republic between 2000 and 2020
- Norovirus infections in the Czech Republic in 2008–2020
- Monitoring changes in invasive disease caused by Haemophilus influenzae in the Czech Republic between 1999 and 2020