Changes of the WHO classification of lymphoid neoplasms in the context of the 2016 revision
Authors:
Tomáš Balhárek 1,2; Juraj Marcinek 1,2; Lukáš Plank 1,2
Authors‘ workplace:
Konzultačné centrum bioptickej diagnostiky ochorení krvotvorby v SR
Ústav patologickej anatómie Jesseniovej lekárskej fakulty Univerzity Komenského a Univerzitnej nemocnice v Martine
1; Konzultačné centrum bioptickej diagnostiky ochorení krvotvorby v SR
Martinské bioptické centrum, s. r. o. v Martine
2
Published in:
Čes.-slov. Patol., 53, 2017, No. 3, p. 122-128
Category:
Reviews Article
Overview
As a result of increasing knowledge, the validity of any tumour classification could not be unlimited. The aim of this article is to review the most important changes in the WHO classification of lymphoid neoplasms of a non-Hodgkin type that have been announced and published in relation to its revision in 2016. These changes are based on better understanding of pathogenesis and genetics of diseases, refine diagnostic criteria, reflect existence of rare forms and introduce new provisional categories of lymphoid neoplasms. WHO classification becomes more complex and the number of disease entities is increasing. However, until the the monography will be published, all changes are preliminary and incomplete, requiring work with available lymphoma literature.
Keywords:
WHO classification – lymphoid neoplasms
Sources
1. Cazzola M. Introduction to a review series: The 2016 revision of the WHO classification of tumors of hematopoietic and lymphoid tissues. Blood 2016; 127(20): 2361-2364.
2. Swerdlow SH, Campo E, Harris NL et al, eds. WHO Classification of Tumors of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, 2008.
3. Swerdlow SH, Campo E, Pileri SA et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016; 127(20): 2375-2390.
4. Scott DW, Wright GW, Williams PM et al. Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. Blood 2014; 123(8): 1214-1217.
5. Hans CP, Weisenburger DD, Greiner TC et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 2004; 103(1): 275-282.
6. Roschewski M, Staudt LM, Wilson WH. Diffuse large B-cell lymphoma-treatment approaches in the molecular era. Nat Rev Clin Oncol 2014; 11(1): 12-23.
7. Nicolae A, Pittaluga S, Abdullah S et al. EBV-positive large B-cell lymphomas in young patients: a nodal lymphoma with evidence for a tolerogenic immune environment. Blood 2015; 126(7): 863-872.
8. Dojcinov SD, Venkataraman G, Raffeld M et al. EBV positive mucocutaneous ulcer - a study of 26 cases associated with various sources of immunosuppression. Am J Surg Pathol 2010; 34(3): 405-417.
9. Swerdlow SH. Diagnosis of „double hit“ diffuse large B-cell lymphoma and B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and Burkitt lymphoma: when and how, FISH versus IHC. Hematology Am Soc Hematol Educ Program 2014; 2014(1): 90-99.
10. Johnson NA, Savage KJ, Ludkovski O et al. Lymphomas with concurrent BCL2 and MYC translocations: the critical factors associated with survival. Blood 2009; 114(11): 2273-2279.
11. Campo E. MYC in DLBCL: partners matter. Blood 2015; 126(22): 2439-2440.
12. Johnson NA, Slack GW, Savage KJ et al. Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine and prednisone. J Clin Oncol 2012; 30(28): 3452-3459.
13. Horn H, Ziepert M, Becher C et al. MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood 2013; 121(12): 2253-2263.
14. Green TM, Young KH, Visco C et al. Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with Rituximab plus Cyclophosphamide, Doxorubicin, Vincristine and Prednisone. J Clin Oncol 2012; 30(28): 3460-3467.
15. Schmitz R, Young RM, Ceribelli M et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 2012; 490(7418): 116-120.
16. Ferreiro JF, Morscio J, Dierickx D et al. Post-transplant molecularly defined Burkitt lymphomas are frequently MYC-negative and characterized by the 11q-gain/loss pattern. Haematologica 2015; 100(7): 275-279.
17. Salaverria I, Philipp C, Oschlies I et al. Molecular mechanisms in Malignant lymphomas network project of the Deutsche Krebshilfe; German high-grade lymphoma study group; Berlin-Frankfurt-Munster-NHL Trial Group. Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults. Blood 2011; 118(1): 139-147.
18. Tiacci E, Trifonov V, Schiavoni G et al. BRAF mutations in hairy-cell leukemia. N Engl J Med 2011; 364(24): 2305-2315.
19. Waterfall JJ, Arons E, Walker RL et al. High prevalence of MAP2K1 mutations in variant and IGHV4-34-expressing hairy-cell leukemias. Nat Genet 2014; 46(1): 8-10.
20. Treon SP, Xu L, Yang G et al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med 2012; 367(9): 826-833.
21. Swerdlow SH, Kuzu I, Dogan A et al. The many faces of small B cell lymphomas with plasmacytic differentiation and the contribution of MYD88 testing. Virchows Arch 2016; 468(3): 259-275.
22. Roccaro AM, Sacco A, Jimenez C et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood 2014; 123(26): 4120-4131.
23. Furtado M, Rule S. Indolent mantle cell lymphoma. Haematologica 2011; 96(8): 1086–1088.
25. Jares P, Colomer D, Campo E. Molecular pathogenesis of mantle cell lymphoma. J Clin Invest 2012; 122(10): 3416-3423.
26. Bea S, Valdes-Mas R, Navarro A et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci 2013; 110(45): 18250-18255.
27. Nodit L, Bahler DW, Jacobs SA, et al. Indolent mantle cell lymphoma with nodal involvement and mutated immunoglobulin heavy chain genes. Hum Pathol 2003; 34(10): 1030-1034.
28. Balhárek T, Plank L. Úloha patológa v manažmente chronickej lymfocytovej leukémie. Onkológia 2014; 9(6): 365–370.
29. Hallek, M., Cheson, B.D., Catovsky, D. et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute – Working Group 1996 guidelines. Blood 2008; 111(12): 5446-5456.
30. Rawstron AC, Shanafelt T, Lanasa MC et al. Different biology and clinical outcome according to the absolute numbers of clonal B-cells in monoclonal B-cell lymphocytosis (MBL). Cytometry B Clin Cytom 2010; 78(suppl 1): S19-S23.
31. Gine E, Martinez A, Villamor N et al. Expanded and highly active proliferation centers identify a histological subtype of chronic lymphocytic leukemia (“accelerated” chronic lymphocytic leukemia) with aggressive clinical behavior. Haematologica 2010; 95(9): 1526-1533.
32. Gradowski JF, Sargent RL, Craig FE et al. Chronic lymphocytic leukemia/small lymphocytic lymphoma with cyclin D1 positive proliferation centers do not have CCND1 translocations or gains and lack SOX11 expression. Am J Clin Pathol 2012; 138(1): 132-139.
33. Rossi D, Rasi S, Spina V et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2013; 121(8): 1403-1412.
34. Baliakas P, Hadzidimitriou A, Sutton LA et al. European Research Initiative on CLL (ERIC). Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia 2015; 29(2): 329-336.
35. Louissaint A, Ackerman AM, Dias-Santagata D et al. Pediatric-type nodal follicular lymphoma: an indolent clonal proliferation in children and adults with high proliferation index and no BCL2 rearrangement. Blood 2012; 120(12): 2395-2404.
36. Schmatz AI, Streubel B, Kretschmer-Chott E et al. Primary follicular lymphoma of the duodenum is a distinct mucosal/submucosal variant of follicular lymphoma: a retrospective study of 63 cases. J Clin Oncol 2011; 29(11): 1445-1451.
37. Katzenberger T, Kalla J, Leich E et al. A distinctive subtype of t(14;18)-negative nodal follicular non-Hodgkin lymphoma characterized by a predominantly diffuse growth pattern and deletions in the chromosomal region 1p36. Blood 2009; 113(5): 1053-1061.
38. Jegalian AG, Eberle FC, Pack SD et al. Follicular lymphoma in situ: clinical implications and comparisons with partial involvement by follicular lymphoma. Blood 2011; 118(11): 2976-2984.
39. Carvajal-Cuenca A, Sua LF, Silva NM et al. In situ mantle cell lymphoma: clinical implications of an incidental finding with indolent clinical behavior. Haematologica 2012; 97(2): 270-278.
40. Iqbal J, Wright G, Wang C et al. Lymphoma Leukemia Molecular Profiling Project and the International Peripheral T-cell Lymphoma Project. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood 2014; 123(19): 2915-2923.
41. Parilla Castellar ER, Jaffe ES, Said JW et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood 2014; 124(9): 1473-1480.
42. Agnelli L, Mereu E, Pellegrino E et al. European T-Cell Lymphoma Study Group. Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large cell lymphoma. Blood 2012; 120(6): 1274-1281.
43. Miranda RN, Aladily TN, Prince HM et al. Breast implant-associated anaplastic large-cell lymphoma: long-term follow-up of 60 patients. J Clin Oncol 2014; 32(2): 114-120.
44. Deleeuw RJ, Zettl A, Klinker E et al. Whole genome analysis and HLA genotyping of enteropathy-type T-cell lymphoma reveals 2 distinct lymphoma subtypes. Gastroenterology 2007; 132(5): 1902-1911.
45. Chan JK, Chan AC, Cheuk W et al. Type II enteropathy-associated T-cell lymphoma: a distinct aggressive lymphoma with frequent γδ T-cell receptor expression. Am J Surg Pathol 2011; 35(10): 1557-1569.
46. Perry AM, Warnke RA, Hu Q et al. Indolent T-cell lymphoproliferative disease of the gastrointestinal tract. Blood 2013; 122(22): 3599-3606.
47. Lemonnier F, Couronne L, Parrens M et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood 2012; 120(7): 1466-1469.
48. Nicolae A, Pittaluga S, Venkataraman G et al. Peripheral T-cell lymphomas of follicular T-helper cell derivation with Hodgkin/Reed-Sternberg cells of B-cell lineage: both EBVpositive and EBV-negative variants exist. Am J Surg Pathol 2013; 37(6): 816-826.
49. Guitart J, Weisenburger DD, Subtil A et al. Cutaneous gd T-cell lymphomas: a spectrum of presentations with overlap with other cytotoxic lymphomas. Am J Surg Pathol 2012; 36(11): 1656-1665.
50. Petrella T, Maubec E, Cornillet-Lefebvre P et al. Indolent CD8-positive lymphoid proliferation of the ear: a distinct primary cutaneous T-cell lymphoma? Am J Surg Pathol 2007; 31(12): 1887-1892.
51. Garcia-Herrera A, Colomo L, Camos M et al. Primary cutaneous small/medium CD4+ T-cell lymphomas: a heterogeneous group of tumors with different clinicopathologic features and outcome. J Clin Oncol 2008; 26(20): 3364-3371.
Labels
Anatomical pathology Forensic medical examiner ToxicologyArticle was published in
Czecho-Slovak Pathology
2017 Issue 3
Most read in this issue
- Lymph node metastasis of Merkel cell carcinoma without known cutaneous primary - case report
- Changes of the WHO classification of lymphoid neoplasms in the context of the 2016 revision
- Isolated infectious endocarditis of the pulmonary valve: a case report
- Changes of the WHO classification of myeloid neoplasms in the context of the 2016 revision