#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The current state of fetal imaging by magnetic resonance imaging


Authors: Hanzlíková Pavla 1,2,3;  Vilímek Dominik 1,4;  Martinek Radek 4;  Delongová Patricie 5,6;  Pavlíček Jan 7
Authors‘ workplace: Ústav radiodiagnostický, FN Ostrava 1;  Ústav zobrazovacích metod, OU Ostrava 2;  Radiologická klinika, Lékařská fakulta, Univerzita Palackého a FN Olomouc 3;  Katedra kybernetiky a biomedicínského inženýrství, Vysoká škola báňská – Technická univerzita Ostrava 4;  Ústav patologie, FN Ostrava 5;  Ústav patologie, OU Ostrava 6;  Klinika dětského lékařství, Lékařská fakulta, Univerzita Palackého a FN Olomouc 7
Published in: Čes-slov Pediat 2023; 78 (6): 315-323.
Category: Comprehensive Report
doi: https://doi.org/10.55095/CSPediatrie2023/052

Overview

Magnetic resonance imaging (MRI), as a method of the second choice for fetal imaging, provides excellent spatial and contrast resolution for evaluating a wide range of pathological conditions, whether congenital or arising during pregnancy.

MR, as a method free of ionizing radiation, is together with ultrasound examination (UZ) a completely safe imaging method.

Because a standardized protocol scans the image, this imaging is not dependent on the examiner. It allows re-evaluation by the radiologist, clinical specialist and other doctors and specialists within the multidisciplinary team dedicated to the issue of prenatal fetal examination.

The benefit of MR imaging is a different principle of tissue morphological imaging compared to US examination. Another advantage of MR is the possibility of imaging not only morphologically but also using free water diffusion imaging – diffusion-weighting imaging (DWI), directional diffusion imaging (diffusion-tensor imaging – DTI), metabolic composition imaging using spectroscopic methods (MR spectroscopy – MRS). Another option for viewing the fetus is a dynamic scan, where the vital functions of the fetus can be monitored over time, similar to an ultrasound. The use of contrast agents is a non-lege artis procedure in the Czech Republic and is not used in standard MR imaging of the fetus.


Sources

1.     Benson CB, Doubilet PM. The history of imaging in obstetrics. Radiology 2014; 273(2 Suppl): S92-110. doi: 10.1148/radiol.14140238

2.     Plunk MR, Chapman T. The fundamentals of fetal MR imaging: Part 1. Curr Probl Diagn Radiol 2014; 43(6): 331–346. doi: 10.1067/j.cpradiol.2014.05.014

3.     Correa FF, Lara C, Bellver J, et al. Potential pitfalls in fetal neurosonography. Prenat Diagn 2006; 26(1): 52–56. doi: 10.1002/pd.1348

4.     Knapp J, Tavares de Sousa M, Schönnagel BP. Fetal cardiovascular MRI - a systemic review of the literature: challenges, new technical developments, and perspectives. Rofo 2022; 194(8): 841–851. doi: 10.1055/a-1761-3500

5.     McCarthy SM, Filly RA, Stark DD, et al. Magnetic resonance imaging of fetal anomalies in utero: early experience. AJR Am J Roentgenol 1985; 145(4): 677–682. doi: 10.2214/ajr.145.4.677

6.     Tocchio S, Kline-Fath B, Kanal E, et al. MRI evaluation and safety in the developing brain. Semin Perinatol 2015; 39(2): 73–104. doi: 10.1053/j.semperi.2015.01.002

7.     Meyers ML, Mirsky DM, Dannull KA, et al. Effects of maternal valium administration on fetal MRI motion artifact: a comparison study at high altitude. Fetal Diagn Ther 2017; 42(2): 124–129. doi: 10.1159/000450978

8.     Malamateniou C, Malik SJ, Counsell SJ, et al. Motion-compensation techniques in neonatal and fetal MR imaging. AJNR Am J Neuroradiol 2013; 34(6): 1124–1136. doi: 10.3174/ajnr.A3128

9.     De Wilde JP, Rivers AW, Price DL. A review of the current use of magnetic resonance imaging in pregnancy and safety implications for the fetus. Prog Biophys Mol Biol 2005; 87(2–3): 335–353. doi: 10.1016/j.pbiomolbio.2004.08.010

10.     Shellock FG, Crues JV. MR procedures: biologic effects, safety, and patient care. Radiology 2004; 232(3): 635–652. doi: 10.1148/radiol.2323030830

11.     Schenck JF. Safety of strong, static magnetic fields. J Magn Reson Imaging 2000; 12(1): 2–19. doi: 10.1002/1522-2586(200007)12

12.     Mevissen M, Buntenkötter S, Löscher W. Effects of static and time-varying (50-Hz) magnetic fields on reproduction and fetal development in rats. Teratology 1994; 50(3): 229–237. doi: 10.1002/tera.1420500308

13.     Wiskirchen J, Groenewaeller EF, Kehlbach R, et al. Long-term effects of repetitive exposure to a static magnetic field (1.5 T) on proliferation of human fetal lung fibroblasts. Magn Reson Med 1999; 41(3): 464–468. doi: 10.1002/(sici)1522-2594(199903)41

14.     Levine D. Timing of MRI in pregnancy, repeat exams, access, and physician qualifications. Semin Perinatol 2013; 37(5): 340–344. doi: 10.1053/j.semperi.2013.06.011

15.    Papaioannou G, Klein W, Cassart M, Garel C. Indications for magnetic resonance imaging of the fetal central nervous system: recommendations from the European Society of Paediatric Radiology Fetal Task Force. Pediatr Radiol 2021; 51(11): 2105–2114. doi: 10.1007/s00247-021-05104-w

16.     Colleran GC, Kyncl M, Garel C, Cassart M. Fetal magnetic resonance imaging at 3 Tesla - the European experience. Pediatr Radiol 2022; 52(5): 959–970. doi: 10.1007/s00247-021-05267-6

17.     Macnaught G, Gray C, Walker J, et al. MRS: a potential biomarker of in utero placental function. NMR Biomed 2015; 28(10): 1275–1282. doi: 10.1002/nbm.3370

18.     Coakley FV, Hricak H, Filly RA,et al. Complex fetal disorders: effect of MR imaging on management--preliminary clinical experience. Radiology 1999; 213(3): 691–696. doi: 10.1148/radiology.213.3.r99dc39691

19.     Gatta G, Di Grezia G, Cuccurullo V, et al. MRI in pregnancy and precision medicine: a review from literature. J Pers Med 2021; 12(1). doi: 10.3390/jpm12010009

20.     Simon EM, Goldstein RB, Coakley FV, et al. Fast MR imaging of fetal CNS anomalies in utero. AJNR Am J Neuroradiol 2000; 21(9): 1688–1698. 

21.     Moradi B, Parooie F, Kazemi MA, et al. Fetal brain imaging: A comparison between fetal ultrasonography and intra uterine magnetic resonance imaging (a systematic review and meta-analysis). J Clin Ultrasound 2022; 50(4): 491–499. doi: 10.1002/jcu.23158

22.     Kakish D, Tominna M, Krishnan A. Hemimegalencephaly: evolution from an atypical focal early appearance on fetal MRI to more conventional MR findings. Cureus 2022; 14(8): e27976. doi: 10.7759/cureus.27976

23.     Vollbrecht TM, Luetkens JA. [Cardiac MRI of congenital heart disease : From fetus to adult]. Radiologie (Heidelb) 2022. doi: 10.1007/s00117-022-01062-y

24.     Brugger PC, Weber M, Prayer D. Magnetic resonance imaging of the normal fetal esophagus. Ultrasound Obstet Gynecol 2011; 38(5): 568–574. doi: 10.1002/uog.9002

25.    Jaimes C, Yang E, Connaughton P, et al. Diagnostic equivalency of fast T2 and FLAIR sequences for pediatric brain MRI: a pilot study. Pediatr Radiol 2020; 50(4): 550–559. doi: 10.1007/s00247-019-04584-1

26.     Masselli G, Vaccaro Notte MR, Zacharzewska-Gondek A, et al. Fetal MRI of CNS abnormalities. Clin Radiol 2020; 75(8): 640.e641–640.e611. doi: 10.1016/j.crad.2020.03.035

27.     Corroenne R, Arthuis C, Kasprian G, et al. Diffusion tensor imaging in fetal brain: review to understand principles, potential and limitations of promising technique. Ultrasound Obstet Gynecol 2022. doi: 10.1002/uog.24935

28.     Jiang S, Xue H, Counsell S, et al. Diffusion tensor imaging (DTI) of the brain in moving subjects: application to in-utero fetal and ex-utero studies. Magn Reson Med 2009; 62(3): 645–655. doi: 10.1002/mrm.22032

29.     Chalouhi GE, Salomon LJ. BOLD-MRI to explore the oxygenation of fetal organs and of the placenta. BJOG 2014; 121(13): 1595. doi: 10.1111/1471-0528.12805

30.     Cahill LS, Zhou YQ, Seed M, et al. Brain sparing in fetal mice: BOLD MRI and Doppler ultrasound show blood redistribution during hypoxia. J Cereb Blood Flow Metab 2014; 34(6): 1082–1088. doi: 10.1038/jcbfm.2014.62

31.     Aertsen M, Diogo MC, Dymarkowski S, et al. Fetal MRI for dummies: what the fetal medicine specialist should know about acquisitions and sequences. Prenat Diagn 2020; 40(1): 6–17. doi: 10.1002/pd.5579

32.     Chambers G, Shelmerdine SC, Aertsen M, et al. Current and future funding streams for paediatric postmortem imaging: European Society of Paediatric Radiology survey results. Pediatr Radiol 2022. doi: 10.1007/s00247-022-05485-6

Labels
Neonatology Paediatrics General practitioner for children and adolescents
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#