#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Postinitial remission in children with type 1 diabetes mellitus


Authors: Podoláková Kristína 1;  Lobotková Denisa 1;  Jančová Emília 1;  Podracká Udmila 1;  Barák Ubomír 1;  Staník Juraj 1,2
Authors‘ workplace: Detská klinika, Lekárska fakulta, Univerzity Komenského, a Národný ústav detských, chorôb, Bratislava 1;  DIABGENE a Oddelenie, výskumu porúch, metabolizmu, Ústav experimentálnej, endokrinológie, Biomedicínske centrum, Slovenskej Akadémie vied, Bratislava 2
Published in: Čes-slov Pediat 2022; 77 (2): 72-77.
Category: Comprehensive Report

Overview

Post-initial remission is a period that occurs shortly after the initiation of treatment for type 1 diabetes mellitus (T1D) and is characterized by a transient improvement in residual endogenous insulin secretion accompanied by a reduced need for exogenous insulin and good glycemic control. Remission occurs in more than ⅓ of children with newly diagnosed T1D, and most cases are partial remission with a reduction in daily insulin dose < 0.5 IU/kg/day; complete remission with temporary discontinuation of insulin therapy is rare. Several factors influence the development and length of remission - known factors include age and early diagnosis of T1D, when diabetic ketoacidosis is not yet developed and the residual secretory capacity of the remaining β-cells secreting insulin is better. In our review article, we discuss in more detail the factors influencing remission as well as efforts to influence the development and duration of post-initial remission pharmacologically or with new technologies.

Keywords:

remission – type 1 diabetes mellitus – children – T1D – factors


Sources

1. Agner T, Damm P, Binder C. Remission in IDDM: prospective study of basal C–peptide and insulin dose in 268 consecutive patients. Diabetes Care 1987; 10(2): 164–9.

2. Mortensen HB, Volund A. Application of a biokinetic model for prediction and assessment of glycated haemoglobins in diabetic patients. Scand J Clin Lab Invest 1988; 48(6): 595–602.

3. Ortqvist E, Falorni A, Scheynius A, et al. Age governs gender- dependent islet cell autoreactivity and predicts the clinical course in childhood IDDM. Acta Paediatr 1997; 86(11): 1166–71.

4. Lundberg RL, Marino KR, Jasrotia A, et al. Partial clinical remission in type 1 diabetes: a comparison of the accuracy of total daily dose of insulin of < 0.3 units/kg/day to the gold standard insulin–dose adjusted hemoglobin A1c of < /=9 for the detection of partial clinical remission. J Pediatr Endocrinol Metab 2017; 30(8): 823–830.

5. Bonfanti R, Bognetti E, Meschi F, et al. Residual beta–cell function and spontaneous clinical remission in type 1 diabetes mellitus: the role of puberty. Acta Diabetol 1998; 35(2): 91–5.

6. Komulainen J, Lounamaa R, Knip M, et al. Ketoacidosis at the diagnosis of type 1 (insulin dependent) diabetes mellitus is related to poor residual beta cell function. Childhood Diabetes in Finland Study Group. Arch Dis Child 1996; 75(5): 410–5.

7. Palmer JP, Fleming GA, Greenbaum CJ, et al. C-peptide is the appropriate outcome measure for type 1 diabetes clinical trials to preserve beta-cell function: report of an ADA workshop, 21–22 October 2001. Diabetes 2004; 53(1): 250–64.

8. Couper JJ, Haller MJ, Greenbaum CJ, et al. ISPAD Clinical Practice Consensus Guidelines 2018: Stages of type 1 diabetes in children and adolescents. Pediatr Diabetes 2018; 19(Suppl 27): 20–27.

9. Lombardo F, Valenzise M, Wasniewska M, et al. Two-year prospective evaluation of the factors affecting honeymoon frequency and duration in children with insulin dependent diabetes mellitus: the key-role of age at diagnosis. Diabetes Nutr Metab 2002; 15(4): 246–51.

10. Mortensen HB, Hougaard P, Swift P, et al. New definition for the partial remission period in children and adolescents with type 1 diabetes. Diabetes Care 2009; 32(8): 1384–90.

11. Effect of intensive therapy on residual beta-cell function in patients with type 1 diabetes in the diabetes control and complications trial. A randomized, controlled trial. The Diabetes Control and Complications Trial Research Group. Ann Intern Med 1998; 128(7): 517–23.

12. Chobot A, Stompor J, Szyda K, et al. Remission phase in children diagnosed with type 1 diabetes in years 2012 to 2013 in Silesia, Poland: An observational study. Pediatr Diabetes 2019; 20(3): 286–292.

13. Nagl K, Hermann JM, Plamper M, et al. Factors contributing to partial remission in type 1 diabetes: analysis based on the insulin dose–adjusted HbA1c in 3657 children and adolescents from Germany and Austria. Pediatr Diabetes 2017; 18(6): 428–434.

14. Passanisi S, Salzano G, Gasbarro A, et al. Influence of Age on Partial Clinical Remission among Children with Newly Diagnosed Type 1 Diabetes. Int J Environ Res Public Health 2020; 17(13).

15. Chiavaroli V, Derraik JGB, Jalaludin MY, et al. Partial remission in type 1 diabetes and associated factors: Analysis based on the insulin dose–adjusted hemoglobin A1c in children and adolescents from a regional diabetes center, Auckland, New Zealand. Pediatr Diabetes 2019; 20(7): 892–900.

16. Marino KR, Lundberg RL, Jasrotia A, et al. A predictive model for lack of partial clinical remission in new–onset pediatric type 1 diabetes. PLoS One 2017; 12(5): e0176860.

17. Nwosu BU, Rupendu S, Zitek-Morrison E, et al. Pubertal lipid levels are significantly lower in youth with type 1 diabetes who experienced partial clinical remission. J Endocr Soc 2019; 3(4): 737–747.

18. Neuman V, Pruhova S, Kulich M, et al. Gluten-free diet in children with recent-onset type 1 diabetes: A 12-month intervention trial. Diabetes Obes Metab 2020; 22(5): 866– 872.

19. Pyziak A, Zmyslowska A, Bobeff K, et al. Markers influencing the presence of partial clinical remission in patients with newly diagnosed type 1 diabetes. J Pediatr Endocrinol Metab 2017; 30(11): 1147–1153.

20. Fonolleda M, Murillo M, Vazquez F, et al. Remission phase in paediatric type 1 diabetes: new understanding and emerging biomarkers. Horm Res Paediatr 2017; 88(5): 307–315.

21. Abdul-Rasoul M, Habib H, Al-Khouly M. ‚The honeymoon phase‘ in children with type 1 diabetes mellitus: frequency, duration, and influential factors. Pediatr Diabetes 2006; 7(2): 101–7.

22. Mortensen HB, Swift PG, Holl RW, et al. Multinational study in children and adolescents with newly diagnosed type 1 diabetes: association of age, ketoacidosis, HLA status, and autoantibodies on residual beta-cell function and glycemic control 12 months after diagnosis. Pediatr Diabetes 2010; 11(4): 218–26.

23. Pozzilli P, Mesturino CA, Crino A, et al. Is the process of beta-cell destruction in type 1 diabetes at time of diagnosis more extensive in females than in males? Eur J Endocrinol 2001; 145(6): 757–61.

24. Zamaklar M, Jotic A, Lalic N, et al. Relation between course of disease in type 1 diabetes and islet cell antibodies. Ann N Y Acad Sci 2002; 958: 251–3.

25. Wilkin TJ. The accelerator hypothesis: weight gain as the missing link between Type I and Type II diabetes. Diabetologia 2001; 44(7): 914–22.

26. D iabetes C, Complications Trial Research G, Nathan DM, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329(14): 977–86.

27. Bunn HF, Gabbay KH, Gallop PM. The glycosylation of hemoglobin: relevance to diabetes mellitus. Science 1978; 200(4337): 21–7.

28. Wong TWC, Wong MYS , But WMB. Features of partial remission in children with type 1 diabetes using the insulin dose- adjusted A1c definition and risk factors associated with nonremission. Ann Pediatr Endocrinol Metab 2021; 26(2): 118–125.

29. Vlassara H, Striker GE. Advanced glycation endproducts in diabetes and diabetic complications. Endocrinol Metab Clin North Am 2013; 42(4): 697–719.

30. Verzijl N, DeGroot J, Thorpe SR, et al. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem 2000; 275(50): 39027–31.

31. Shields BM, McDonald TJ, Oram R, et al. C-peptide decline in type 1 diabetes has two phases: an initial exponential fall and a subsequent stable phase. Diabetes Care 2018; 41(7): 1486–1492.

32. Akirav E, Kushner JA, Herold KC. Beta-cell mass and type 1 diabetes: going, going, gone? Diabetes 2008; 57(11): 2883–8.

33. Martin S, Pawlowski B, Greulich B, et al. Natural course of remission in IDDM during 1st yr after diagnosis. Diabetes Care 1992; 15(1): 66–74.

34. Simell T, Kaprio EA, Maenpaa J, et al. Randomised prospective study of short–term and long–term initial stay in hospital by children with diabetes mellitus. Lancet 1991; 337(8742): 656–60.

35. Marek-Trzonkowska N, Mysliwiec M, Iwaszkiewicz-Grzes D, et al. Factors affecting long-term efficacy of T regulatory cell-based therapy in type 1 diabetes. J Transl Med 2016; 14(1): 332.

36. Jamiolkowska-Sztabkowska M, Glowinska-Olszewska B, Luczynski W, et al. Regular physical activity as a physiological factor contributing to extend partial remission time in children with new onset diabetes mellitus - two years observation. Pediatr Diabetes 2020; 21(5): 800–807.

37. Ludvigsson J, Cheramy M, Axelsson S, et al. GAD-treatment of children and adolescents with recent-onset type 1 diabetes preserves residual insulin secretion after 30 months. Diabetes Metab Res Rev 2014; 30(5): 405–14.

38. S vensson J, Sildorf SM, Pipper CB, et al. Potential beneficial effects of a gluten-free diet in newly diagnosed children with type 1 diabetes: a pilot study. Springerplus 2016; 5(1): 994.

39. Bouillet B, Rouland A, Petit JM, et al. A low-carbohydrate high-fat diet initiated promptly after diagnosis provides clinical remission in three patients with type 1 diabetes. Diabetes Metab 2020; 46(6): 511–513.

40. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study G. Effectiveness of continuous glucose monitoring in a clinical care environment: evidence from the Juvenile Diabetes Research Foundation continuous glucose monitoring (JDRF-CGM) trial. Diabetes Care 2010; 33(1): 17–22.

41. Thrailkill KM, Moreau CS, Swearingen C, et al. Insulin pump therapy started at the time of diagnosis: effects on glycemic control and pancreatic beta-cell function in type 1 diabetes. Diabetes Technol Ther 2011; 13(10): 1023– 30.

42. Sherr JL, Tauschmann M, Battelino T, et al. ISPAD Clinical Practice Consensus Guidelines 2018: Diabetes technologies. Pediatr Diabetes 2018; 19 Suppl 27: 302–325.

43. de Bock M, Dart J, Roy A, et al. Exploration of the performance of a hybrid closed loop insulin delivery algorithm that includes insulin delivery limits designed to protect against hypoglycemia. J Diabetes Sci Technol 2017; 11(1): 68– 73.

44. Patton SR, Noser AE, Youngkin EM, et al. Early initiation of diabetes devices relates to improved glycemic control in children with recent-onset type 1 diabetes mellitus. Diabetes Technol Ther 2019; 21(7): 379–384.

Labels
Neonatology Paediatrics General practitioner for children and adolescents
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#