Hirschsprung´s disease and its genetic cause
Authors:
Š. Dvořáková 1; E. Václavíková 1,2; R. Škába 3; L. Kavalcová 3; B. Bendlová 1
Authors‘ workplace:
Oddělení molekulární endokrinologie, Endokrinologický ústav, Prahavedoucí Mgr. J. Včelák
1; Katedra biochemie, Přírodovědecká fakulta, Univerzita Karlova, Prahavedoucí doc. RNDr. M. Šulc, Ph. D.
2; Klinika dětské chirurgie, UK 2. LF a FN Motol, Prahapřednosta prof. MUDr. J. Šnajdauf, DrSc.
3
Published in:
Čes-slov Pediat 2013; 68 (3): 167-176.
Category:
Review
Overview
Hirschsprung´s disease (HSCR) is a congenital developmental disease of enteric nervous system. The cause is the congenital primary loss of intramural innervation of certain bowel segment. The affected part of bowel is permanently contracted and the healthy bowel above is dilatated and it leads to the development of megacolon. Several variants of HSCR are distinguished by different length of affected colon. It is occurred alone or syndromic, sporadic (80%) or familial form (20%) of HSCR. Genetic cause of HSCR is complex, 12 causative genes are known to be involved in different signal cascades. The major gene is the RET proto-oncogene, where causative inactivating mutations or predisposing variants in coding or non-coding part of gene are found. The other genes are involved in RET/GDNF or EDNRB/ENT3 cascades and transcription factors modulating activities of these cascades. These cascades and factors are in connection and influence themselves. Beside causative genes several modifying genes are known that can influence phenotype of HSCR. Due to the recognition of genetic cause of HSCR it is possible to find the cause of development of HSCR, distinguish the inheritance and the penetrance of each mutation. Because mutations in the RET proto-oncogene are known to be the cause of development of medullary thyroid carcinoma (MTC), patients with HSCR are in higher risk of MTC and all patients should be recommended to genetic screening.
Key words:
Hirschsprung´s disease, neurocristopathy, genetics, RET proto-oncogene, medullary thyroid carcinoma, signal cascades
Sources
1. Amiel J, Sproat-Emison E, Garcia-Barcelo M, et al. Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet 2008; 45: 1–14.
2. Martucciello G, Ceccherini I, Lerome M, et al. Pathogenesis of Hirschsprung’s disease. J Pediatr Surg 2000; 35: 1017–1025.
3. Heanue TA, Pachnis V. Enteric nervous system development and Hirschsprung‘s disease: advances in genetic and stem cell studies. Nat Rev Neurosci 2007; 8: 466–479.
4. Amiel J, Lyonnet S. Hirschsprung disease, associated syndromes, and genetics: a review. J Med Genet 2001; 38: 729–739.
5. Kessmann J. Hirschsprung‘s disease: diagnosis and management. Am Fam Physician 2006; 74: 1319–1322.
6. de Lorijn F, Kremer LC, Reitsma JB, et al. Diagnostic tests in Hirschsprung disease: a systematic review. J Pediatr Gastroenterol Nutr 2006; 42: 496–505.
7. Godbole K. Many faces of Hirschsprung‘s disease. Indian Pediatr 2004; 41: 1115–1123.
8. Wallace AS, Anderson RB. Genetic interactions and modifier genes in Hirschsprung‘s disease. World J Gastroenterol 2011; 17: 4937–4944.
9. Emison ES, Garcia-Barcelo M, Grice EA, et al. Differential contributions of rare and common, coding and noncoding Ret mutations to multifactorial Hirschsprung disease liability. Am J Hum Genet 2010; 87: 60–74.
10. Lantieri F, Griseri P, Ceccherini I. Molecular mechanisms of RET-induced Hirschsprung pathogenesis. Ann Med 2006; 38: 11–19.
11. Asai N, Jijiwa M, Enomoto A, et al. RET receptor signaling: dysfunction in thyroid cancer and Hirschsprung‘s disease. Pathol Int 2006; 56: 164–172.
12. Arighi E, Popsueva A, Degl’Innocenti D, et al. Biological effects of the dual phenotypic Janus mutation of ret co-segregating with both multiple endocrine neoplasia type 2 and Hirschsprung’s disease. Mol Endocrinol 2004; 18: 1004–1017.
13. Crockett DK, Piccolo SR, Ridge PG, et al. Predicting phenotypic severity of uncertain gene variants in the RET proto-oncogene. PLoS One 2011; 6: e18380.
14. Burzynski GM, Nolte IM, Bronda A, et al. Identifying candidate Hirschsprung disease-associated RET variants. Am J Hum Genet 2005; 76: 850–858.
15. Bolk S, Pelet A, Hofstra RM, et al. A human model for multigenic inheritance: phenotypic expression in Hirschsprung disease requires both the RET gene and a new 9q31 locus. Proc Natl Acad Sci U S A 2000; 97: 268–273.
16. Angrist M, Bolk S, Halushka M, et al. Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat Genet 1996; 14: 341–344.
17. Doray B, Salomon R, Amiel J, et al. Mutation of the RET ligand, neurturin, supports multigenic inheritance in Hirschsprung disease. Hum Mol Genet 1998; 7: 1449–1452.
18. Puffenberger EG, Hosoda K, Washington SS, et al. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung’s disease. Cell 1994; 79: 1257–1266.
19. Hofstra RM, Valdenaire O, Arch E, et al. A loss-of-function mutation in the endothelin-converting enzyme 1 (ECE-1) associated with Hirschsprung disease, cardiac defects, and autonomic dysfunction. Am J Hum Genet 1999; 64: 304–308.
20. Pingault V, Bondurand N, Kuhlbrodt K, et al. SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet 1998; 18: 171–173.
21. Amiel J, Laudier B, Attié-Bitach T, et al. Trang polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet 2003; 33: 459–461.
22. Zweier C, Albrecht B, Mitulla B, et al. Mowat-Wilson syndrome with and without Hirsch-sprung disease is a distinct, recognizable multiple congenital anomalies-mental retardation syndrome caused by mutations in the zinc finger homeo box 1B gene. Am J Med Genet 2002; 108: 177–181.
23. Brooks AS, Bertoli-Avella AM, Burzynski GM, et al. Homozygous nonsense mutations in KIAA1279 are associated with malformations of the central and enteric nervous systems. Am J Hum Genet 2005; 77: 120–126.
24. Carrasquillo MM, McCallion AS, Puffen-berger EG, et al. Genome wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung’s disease. Nat Genet 2002; 32: 237–244.
25. Barlow A, de Graaff E, Pachnis V. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron 2003; 40: 905–916.
26. Lang D, Epstein JA. Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. Hum Mol Genet 2003; 12: 937–945.
27. Parisi MA, Kapur RP, Neilson I, et al. Hydrocephalus and intestinal aganglionosis: is L1CAM a modifier gene in Hirschsprung’s disease? Am J Med Genet 2002; 108: 51–56.
28. Garcia-Barcelo MM, Tang CS, Ngan ES, et al. Genome-wide association study identifies NRG1 as a susceptibility locus for Hirschsprung‘s disease. Proc Natl Acad Sci U S A 2009; 106: 2694–2699.
29. Vaclavikova E, Kavalcova L, Skaba R, et al. Hirschsprung‘s disease and medullary thyroid carcinoma: 15-year experience with molecular genetic screening of the RET proto-oncogene. Pediatr Surg Int 2012; 28: 12312–12318.
Labels
Neonatology Paediatrics General practitioner for children and adolescentsArticle was published in
Czech-Slovak Pediatrics
2013 Issue 3
Most read in this issue
- Hirschsprung´s disease and its genetic cause
- Nutritional screening upon admission to hospital – NutriAction
- Congenital surfactant deficiency due to ABCA3 mutations leading to fatal respiratory failure in a newborn
-
Incidence of idiopathic enteric inflammations in children and adolescents in the Plzeň (Pilsen) Region in 2001–2011.
A Prospective study