The concentration of lead in blood and allergic sensitization in children of pre-school age from two regions of Slovakia
Authors:
Babjaková J.1 ,2; Ľ. Palkovičová 2; H. Patayová 2; K. Rausová 2; S. Wimmerová 3; M. Ursínyová 4; Z. Hušeková 4; P. Čižnár 5
Authors‘ workplace:
Ústav hygieny, Lekárska fakulta Univerzity Komenského, Bratislava, prednosta prof. MUDr. Ľ. Ševčíková, CSc., Oddelenie environmentálnej medicíny, Fakulta verejného zdravotníctva Slovenskej zdravotníckej univerzity, Bratislava , vedúca MUDr. Ľ. Palk
1
Published in:
Čes-slov Pediat 2012; 67 (1): 15-22.
Category:
Original Papers
Overview
Aim:
To evaluate the association between the exposure to lead (Pb) and presence of specific antibodies (sIgE) against the most common inhalant and food allergens in children from Bratislava and Stara Lubovna.
Methodology:
Within the APVT project „Prenatal/postnatal exposure to xenobiotics and development of allergic diseases in early childhood“, 2005–2008, children were annually examined by the allergist, sample of child venous blood was taken and the questionnaire was completed by mother of a child. The concentrations of lead in blood were measured using atomic absoption spectrometry in 4-years old children and the levels of specific antibodies against the most common food (fx5) and inhalant allergens (Phadiatop) were determined using UniCAP®Specific IgE Fluoroenzymeimmunoassay method, RAST FEIA in 5-years old children.
Results:
The concentration of blood Pb in children was within the range of 10,88–65,23 µg/l. Higher Pb concentrations were found in children from Stara Lubovna (24,47 µg/l), if compared to Bratislava (22,79 µg/l), although the difference was not statistically significant. In Bratislava, children had significantly higher prevalence of positive levels of sIgE against inhalant allergens, if compared to Stara Lubovna (18.3% vs. 6.7%; OR 3.143 (95% CI: 1.09–9.03)). There were no differences in sensitization against food allergens between the two regions.
Conclusion:
We did not find a significant relationship between blood Pb concentrations in children and sensitization to the most common inhalant and food allergens, although there was a trend towards higher Pb concentrations in children with positive specific antibodies against inhalant and food allergens.
Key words:
pre-schoolaged children, Bratislava, Stara Lubovna, exposure to lead, sensitization against inhalant and food allergens
Sources
1. WHO. Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulphur dioxide. Global update 2005. Summary of risk assessment. World Health Organization. Available: http://www. who.int/phe/air/aqg2006execsum.pdf [accessed 6 March 2007].
2. Smith KR, Corvalan CF, Kjellstrom T. How much global ill health is attributable to environmental factors? Epidemiology 1999; 10: 573–584.
3. WHO. Almost a quarter of all disease caused by environmental exposure. Geneva: World Health Organization, 2006.
4. Ferenčík M, Rovenský J, Shoenfeld Y, et al. Imunitný systém – dobrý obranca, ale aj možný diverzant, Vydanie prvé. Bratislava: Slovac Academic Press, s.r.o., 2004: 165–204.
5. Behrendt H. Environmental factors as determinants of allergy development. MMW Fortschr Med 2006; 148(29–30): 32–33.
6. Tanaka K, Miyake Y, Kiyohara C. Environmental factors and allergic disorders. Allergol Int 2007; 56(4): 363–396.
7. Dluholucký S. Životné prostredie a dieťa. Život Prostr 2002; 36: 3.
8. Link B, Gabrio T, Piechotowski I, et al. Baden-Wuettemberg environmental health survey from 1996 to 2003: Toxic metals in blood and urine of children. Int J Hyg Environ Health 2007; 210: 357–371.
9. Wigle DT, Arbuckle TE, Turner MC, et al. Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants. J Toxicol Environ Health B Crit Rev 2008; 11(5–6): 373–387.
10. North ML, Ellis AK. The role of epigenetics in the developmental origins of allergic disease. Ann Allergy Asthma Immunol 2011 May; 106(5): 355–361.
11. Hlavatá A, Čižnár P, Benedeková M. Environmentálne rizikové faktory atopie u detí. Čes-slov Pediat 2007; 62(12): 674–683.
12. Ursínyová M, Hladíková V. Stanovenie olova v krvi metódou AAS. Chem Listy 1995; 89: 388–392.
13. Agency for Toxic Substances and Disease Registry (ATSDR) Available: http:// www.atsdr.cdc.gov/ [accessed 14 December 2010].
14. Stuchlíková H, Dvořák P, Remešová S, et al. Závažná intoxikácia olovom z keramické čajové konvice u desetileté dívky. Čes-slov Pediat 2006; 61(12): 692–696.
15. CDC. Preventing Lead Poisoning in Young Children U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control Publication date: 10/01/1991, Available: http://wonder.cdc.gov/wonder/prevguid/p0000029/p0000029.asp [accessed 14 November 2009].
16. WHO. Environmental Health Criteria 165—Inorganic Lead. Geneva: International Programme on Chemical Safety, World Health Organization, 1995.
17. Lanphear BP, Hornung R, Khoury J. Low-level environmental lead exposure and children´s intellectual function: An international pooled analysis. Environ Health Perspect 2005; 113: 894–899.
18. Surkan PJ, Zhang A, Trachtenberg F. Neuropsychological function in children with blood lead levels <10 μg/dl. Neurotoxicology 2007; 28 (6):1170-1177.
19. Bellinger DC. Lead. Pediatrics 2004; 113(4): 1016–1020.
20. JuskoTA, Henderson ChR, Lanphear B. Blood lead concentrations <10 μg/dl and child intelligence at 6 years of age. Environ Health Perspect 2008; 116: 243–248.
21. Hornung RW, Lanphear BP, Dietrich KN. Age of greatest susceptibility to childhood lead exposure: a new statistical approach. Environ Health Perspect 2009; 117(8): 1309–1312.
22. Florea AM, Busselberg D. Occurrence, use and potential toxic effects of metals and metal compounds. Biometals 2006; 19(4): 419–427.
23. Bunn TL, Parsons PJ, Kao E. Exposure to lead during critical windows of embryonic development: Differential immunotoxic outcome based on stage of exposure and gender. Toxicological Sciences 2001; 64: 57–66.
24. Snyder JE, Filipov NM, Parsons PJ. The efficiency of maternal transfer of lead and its influence on plasma IgE and splenic cellularity of mice. Toxicol Sci 2000; 57: 87–94.
25. MŽP SR, Správa o stave životného prostredia. Slovenská agentúra životného prostredia, 2007. Available: http://enviroportal.sk/pdf/spravy_zp/2007-sk/2_Zlozky. pdf //. [accessed 14 september 2011].
26. Dluholucký S, Orosová J. Dieťa a olovo I., II. Čes-slov Pediat 1981; 36: 333, 389.
27. Černá M, Kazmarová H, Kratenová J, Kratzer K, Ruprich J, Šmerhovsky Z, Zimová M. Systém monitorování zdravotního stavu obyvatelstva České republiky ve vztahu k životnímu prostředí. Souhrnná zpráva za rok 2008. Praha: SZÚ, 2009.
28. Gump BB, Stewart P, Reihman J, et al. Prenatal and early childhood blood lead levels and cardiovascular functioning in 9½ year old children. Neurotoxicology and Teratology 2005; 27: 655–665.
29. CDC. 2005. Pediatric and Pregnancy Nutrition Surveillance System. Atlanta: Centers for Disease Control and Prevention. Available: http://www.cdc.gov/ pednss/how_to/interpret_data/case_studies/breastfeeding/what.htm [accessed 14 November 2009].
30. Hladíková V, Ursínyová M, Šovčíková E. Children´s blood lead levels in relation to the selected environmental risk factors. In: Proceedings of the International Symposium on Environmental Epidemiology in Central and Eastern Europe: Critical Issues for Improving Health. Smolenice, Slovak Republic, 1997: 64–66.
31. Morelli V, Zoorob R. In: Chey H, Buchanan S. Toxins in everyday life. Primary care: Clinics in Office Practice 2008; 35(4): 707–723.
32. Ursínyová V, Hladíková M. Lead in he environment of Cenral Europe. In: Markert B, Friese K. Trace Elements – Their Distribution and Effects in the Environment. Elsevier Science B.V, chapter 4, 2000: 109–134.
33. Elinder CG, Friberg L, Lind B, et al. Lead and cadmium levels in blood samples from the general population of Sweden. Environ Res 1983; 30(1): 233–253.
34. Cox L, Williams B, Sicherer S. Pearls and pitfalls of allergy diagnostic testing: report from the American College of Allergy, Asthma and Immunology/ American Academy of Allergy, Asthma and Immunology Specific IgE Test Task Force. Ann Allergy Asthma Immunol 2008; 101(6): 580–592.
35. Hlavatá A, Čižnár P, Palkovičová Ľ. Výskyt a rizikové faktory alergických ochorení u detí predškolského veku v priemyselnom a vidieckom regióne Slovenska. Čes-slov Pediat 2008; 63(12): 668–676.
36. Alfvén T, Braun-Fahrlander C, Brunekreef B. Allergic diseases and atopic sensitization in children related to farming and anthroposophic lifestyle – The PARSIFAL study. Eur J Allergy Clin Immunol 2006; 61: 414–421.
37. Wong GWK, Chow CM. Childhood asthma epidemiology: Insights from comparative studies of rural and urban populations. Pediatr Pulmology 2008; 43: 107–116.
38. Reigart JR, Graber CD. Evaluation of the humoral immune response of children with low level lead exposure. Bull Environ Contam Toxicol 1976; 16: 112–117.
39. Lutz PM, Wilson TJ, Ireland J. Elevated imunoglobin E (IgE) levels in children with exposure to environmental lead. Toxicology1999; 134: 63–78.
40. Karmaus W, Brooks KR, NebetWitten J, et al. Immune function biomarkers in children exposed to lead and organochlorine compounds: a cross-sectional study. Environ Health 2005; 4(5): 1–10.
41. Sun L, Hu J, Zhao Z, et al. Influence of exposure to environmental lead on serum immunoglobulin in preschool children. Environ Res 2003; 92: 124–128.
42. Annesi-Maesano I, Pollitt R, King G. In utero exposure to lead and cord blood total IgE. Is there a connection? Allergy 2003; 58(7): 589–594.
43. Sarasua SM, Vogt RF, Henderson LO, et al. Serum immunoglobulins and lymphocyte subset distributions in children and adults living in communities assessed for lead and cadmium exposure. J Toxicol Environ Health Part A 2000; 60: 1–15.
Labels
Neonatology Paediatrics General practitioner for children and adolescentsArticle was published in
Czech-Slovak Pediatrics
2012 Issue 1
Most read in this issue
- Influenced pain by children dental treatment
- When to search for inhereted thrombophilia risk factors in children?
- The effect of thumb sucking on splanchocraniums development in childhood
- Xp21 microdeletion syndrome: Severe cause of adrenal insufficiency, muscular dystrophy, plasma lipid disorder and developmental delay in a two-month-old child with failure to thrive