Serum biomarkers in axial spondyloarthritis
Authors:
K. Grobelná; K. Pavelka; L. Šenolt
Authors‘ workplace:
Revmatologická klinika 1. LF UK Praha
; Revmatologický ústav Praha
Published in:
Čes. Revmatol., 23, 2015, No. 4, p. 146-162.
Category:
Review Article
Overview
Axial spondyloarthritis (axSpA) lacks reliable indicators that would have predictive value in assessing risk of development of the disease, disease activity or progression or response to treatment, and that could also be measured easily and inexpensively. There are many studies focusing on the detection of such markers. An increased risk of disease onset is usually associated with HLA-B27 antigen; furthermore, promising associations have been demonstrated with some variants of the endoplasmic reticulum aminopeptidase - 1 (ERAP1) gene. Biomarkers used for the assessment of disease activity and progression or response to anti-TNF therapy are usually classified into two main groups: biomarkers that are related to the inflammatory process or to metabolism of the joint tissues. C-reactive protein (CRP) along with erythrocyte sedimentation rate (ESR) are the basic pillars of the group of markers reflecting inflammatory activity. However, they have low sensitivity and specificity. Other indicators of inflammatory activity include serum amyloid A (SAA) or interleukin-6 (IL-6), metalloproteinase-3 (MMP-3) and other markers as calprotectin (S100A8 / A9), dickkopf-1 (DKK-1) or cytotoxic T lymphocyte-associated protein-4 (sCTLA-4) or the type III collagen degradation peptide (C3M). Potential predictors of radiographic progression include MMP-3, sclerostin, DKK-1 and certain types of bone morphogenic proteins (BMP-2 and 4). Good response to treatment can be expected especially in patients with higher levels of acute phase reactants and pre-existing structural damage to the spine. A lot of available biomarkers associated with axSpA are based on a large number of studies. Thanks to them we are able to at least partially elucidate the pathogenesis of this disease and to identify other possible approaches to treatment. Most studies, however, have its limitations, such as insufficient number of patients in the studied cohorts, different standards and techniques for the determination of biomarkers in serum, and finally absence of multivariate analysis. The aim of this work was to develop an overview of available serum laboratory markers associated with axSpA.
Key words:
biomarker, spondyloarthritis, ankylosing spondylitis
Sources
1. Rudwaleit M, Khan MA, Sieper J. The challenge of diagnosis and classification in early ankylosing spondylitis: do we need new criteria? Arthritis Rheum 2005; 52(4): 1000 – 8.
2. Rudwaleit M, van der Heijde D, Landewe R, et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): validation and final selection. Annals Rheum Dis 2009; 68(6): 777 – 83.
3. Braun J, Sieper J. Ankylosing spondylitis. Lancet 2007; 369(9570): 1379 – 90.
4. Boonen A, Brinkhuizen T, Landewe R, et al. Impact of ankylosing spondylitis on sick leave, presenteeism and unpaid productivity, and estimation of the societal cost. Ann Rheum Dis 2010; 69(6): 1123 – 8.
5. Biomarkers definition Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69(3): 89 – 95.
6. Carter N, Williamson L, Kennedy LG, et al. Susceptibility to ankylosing spondylitis. Rheumatology (Oxford) 2000; 39(4): 445.
7. Brown MA, Kennedy LG, MacGregor AJ, et al. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum 1997; 40(10): 1823 – 8.
8. MacLean IL, Iqball S, Woo P, et al. HLA-B27 subtypes in the spondarthropathies. Clinical Exp Immunol 1993; 91(2): 214 – 9.
9. Lopez-Larrea C, Sujirachato K, Mehra NK, et al. HLA-B27 subtypes in Asian patients with ankylosing spondylitis. Evidence for new associations. Tissue Antigens 1995; 45(3): 169 – 76.
10. Ben Radhia K, Ayed-Jendoubi S, Sfar I, et al. Distribution of HLA-B*27 subtypes in Tunisians and their association with ankylosing spondylitis. Joint Bone Spine 2008; 75(2): 172 – 5.
11. Reveille JD, Inman R, Khan M, et al. Family studies in ankylosing spondylitis: microsatellite analysis of 55 concordant sib pairs. J Rheumatol 2000; 27(Suppl 59) (5).
12. Braun J, Bollow M, Remlinger G, et al. Prevalence of spondylarthropathies in HLA-B27 positive and negative blood donors. Arthritis Rheum 1998; 41(1): 58 – 67.
13. van der Linden SM, Valkenburg HA, de Jongh BM, et al. The risk of developing ankylosing spondylitis in HLA-B27 positive individuals. A comparison of relatives of spondylitis patients with the general population. Arthritis Rheum 1984; 27(3): 241 – 9.
14. Wei JC, Tsai WC, Lin HS, et al. HLA-B60 and B61 are strongly associated with ankylosing spondylitis in HLA-B27-negative Taiwan Chinese patients. Rheumatology (Oxford) 2004; 43(7): 839 – 42.
15. Diaz-Pena R, Aransay AM, Bruges-Armas J, et al. Fine mapping of a major histocompatibility complex in ankylosing spondylitis: association of the HLA-DPA1 and HLA-DPB1 regions. Arthritis Rheum 2011; 63(11): 3305 – 12.
16. Sims AM, Barnardo M, Herzberg I, et al. Non-B27 MHC associations of ankylosing spondylitis. Genes and immunity 2007; 8(2): 115 – 23.
17. Breban M. Genetic studies of spondylarthropathies. French Spondylarthropathy Genetic Study Group. Ann Med Interne (Paris) 1998; 149(3): 142 – 4.
18. Robinson PC, Brown MA. Genetics of ankylosing spondylitis. Mol Immunol 2014; 57(1): 2 – 11.
19. Cortes A, Hadler J, Pointon JP, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet 2013; 45(7): 730 – 8.
20. Alvarez-Navarro C, Lopez de Castro JA. ERAP1 structure, function and pathogenetic role in ankylosing spondylitis and other MHC-associated diseases. Mol Immunol 2014; 57(1): 12 – 21.
21. Burton PR, Clayton DG, Cardon LR, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 2007; 39(11): 1329 – 37.
22. Reveille JD, Sims AM, Danoy P, et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nature genetics 2010;42(2):123-7.
23. Rahman P, Inman RD, Gladman DD, et al. Association of interleukin-23 receptor variants with ankylosing spondylitis. Arthritis Rheum 2008; 58(4): 1020 – 5.
24. Smith JA, Colbert RA. Review: The interleukin-23/interleukin-17 axis in spondyloarthritis pathogenesis: Th17 and beyond. Arthritis Rheum 2014; 66(2): 231 – 41.
25. Jandus C, Bioley G, Rivals JP, et al. Increased numbers of circulating polyfunctional Th17 memory cells in patients with seronegative spondylarthritides. Arthritis Rheum 2008; 58(8): 2307 – 17.
26. Wendling D, Cedoz J-P, Racadot E, et al. Serum IL-17, BMP-7, and bone turnover markers in patients with ankylosing spondylitis. Joint Bone Spine 2007; 74(3): 304 – 05.
27. Sims AM, Timms AE, Bruges-Armas J, et al. Prospective meta-analysis of interleukin 1 gene complex polymorphisms confirms associations with ankylosing spondylitis. Ann Rheum Dis 2008; 67(9): 1305 – 9.
28. Monnet D, Kadi A, Izac B, et al. Association between the IL-1 family gene cluster and spondyloarthritis. Ann Rheum Dis 2012; 71(6): 885 – 90.
29. Karaderi T, Keidel SM, Pointon JJ, et al. Ankylosing spondylitis is associated with the anthrax toxin receptor 2 gene (ANTXR2). Ann Rheum Dis 2014; 73(11): 2054 – 8.
30. Tsui HW, Inman RD, Paterson AD, et al. ANKH variants associated with ankylosing spondylitis: gender differences. Arthritis Research & Therapy 2005; 7(3): R513 – 25.
31. Tsui HW, Inman RD, Reveille JD, et al. Association of a TNAP haplotype with ankylosing spondylitis. Arthritis Rheum 2007; 56(1): 234 – 43.
32. van der Heijde D, Lie E, Kvien TK, et al. ASDAS, a highly discriminatory ASAS-endorsed disease activity score in patients with ankylosing spondylitis. Ann Rheum Dis 2009; 68(12): 1811 – 8.
33. Appel H, Loddenkemper C, Grozdanovic Z, et al. Correlation of histopathological findings and magnetic resonance imaging in the spine of patients with ankylosing spondylitis. Arthritis Res Ther 2006; 8(5): R143.
34. Deodhar SD. C-reactive protein: the best laboratory indicator available for monitoring disease activity. Cleveland Clinic J Med 1989; 56(2): 126 – 30.
35. Morley JJ, Kushner I. Serum C-reactive protein levels in disease. Ann N Y Acad Science 1982; 389: 406 – 18.
36. Maksymowych WP. Biomarkers in spondyloarthritis. Current rheumatology reports 2010; 12(5): 318 – 24.
37. Spoorenberg A, van der Heijde D, de Klerk E, et al. Relative value of erythrocyte sedimentation rate and C-reactive protein in assessment of disease activity in ankylosing spondylitis. The Journal of rheumatology 1999; 26(4): 980 – 4.
38. Lambert RG, Salonen D, Rahman P, et al. Adalimumab significantly reduces both spinal and sacroiliac joint inflammation in patients with ankylosing spondylitis: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum 2007; 56(12): 4005 – 14.
39. Poddubnyy DA, Rudwaleit M, Listing J, et al. Comparison of a high sensitivity and standard C reactive protein measurement in patients with ankylosing spondylitis and non-radiographic axial spondyloarthritis. Ann Rheum Dis 2010; 69(7): 1338 – 41.
40. Ridker PM. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation 2001; 103(13): 1813 – 8.
41. Jung SY, Park M-C, Park Y-B, et al. Serum Amyloid A as a Useful Indicator of Disease Activity in Patients with Ankylosing Spondylitis. Yonsei Med J 2007; 48(2): 218 – 24.
42. Bal A, Unlu E, Bahar G, et al. Comparison of serum IL-1 beta, sIL-2R, IL-6, and TNF-alpha levels with disease activity parameters in ankylosing spondylitis. Clin Rheumatol 2007; 26(2): 211 – 5.
43. Gratacos J, Collado A, Filella X, et al. Serum cytokines (IL-6, TNF-alpha, IL-1 beta and IFN-gamma) in ankylosing spondylitis: a close correlation between serum IL-6 and disease activity and severity. Br J Rheumatol 1994; 33(10): 927 – 31.
44. Mei Y, Pan F, Gao J, et al. Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis. Clin Rheumatol 2011; 30(2): 269 – 73.
45. Toussirot E, Lafforgue P, Boucraut J, et al. Serum levels of interleukin 1-beta, tumor necrosis factor-alpha, soluble interleukin 2 receptor and soluble CD8 in seronegative spondylarthropathies. Rheumatol Internat 1994; 13(5): 175 – 80.
46. Visvanathan S, Wagner C, Marini JC, et al. Inflammatory biomarkers, disease activity and spinal disease measures in patients with ankylosing spondylitis after treatment with infliximab. Ann Rheum Dis 2008; 67(4): 511 – 7.
47. Jansen DT, Hameetman M, van Bergen J, et al. IL-17-producing CD4+ T cells are increased in early, active axial spondyloarthritis including patients without imaging abnormalities. Rheumatology (Oxford) 2015; 54(4): 728 – 35.
48. Xueyi L, Lina C, Zhenbiao W, et al. Levels of circulating Th17 cells and regulatory T cells in ankylosing spondylitis patients with an inadequate response to anti-TNF-alpha therapy. J Clin Immunol 2013; 33(1): 151 – 61.
49. Wendling D, Cedoz JP, Racadot E. Serum and synovial fluid levels of p40 IL12/23 in spondyloarthropathy patients. Clin Rheumatol 2009; 28(2): 187 – 90.
50. Teft WA, Kirchhof MG, Madrenas J. A molecular perspective of CTLA-4 function. Ann Rev Immunol 2006; 24: 65 – 97.
51. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Ann Rev Immunol 1996; 14: 233 – 58.
52. Carreno BM, Bennett F, Chau TA, et al. CTLA-4 (CD152) can inhibit T cell activation by two different mechanisms depending on its level of cell surface expression. J Immunol 2000; 165(3): 1352 – 6.
53. Toussirot E, Saas P, Deschamps M, et al. Increased production of soluble CTLA-4 in patients with spondylarthropathies correlates with disease activity. Arthritis Res Ther 2009; 11(4): R101.
54. Procaccini C, De Rosa V, Galgani M, et al. Role of adipokines signaling in the modulation of T cells function. Front Immunol 2013; 4: 332.
55. Park MC, Chung SJ, Park YB, et al. Pro-inflammatory effect of leptin on peripheral blood mononuclear cells of patients with ankylosing spondylitis. Joint Bone Spine 2009; 76(2): 170 – 5.
56. Sari I, Demir T, Kozaci L, et al. Body composition, insulin, and leptin levels in patients with ankylosing spondylitis. Clin Rheumatol 2007; 26(9): 1427 – 32.
57. Neumann E, Frommer KW, Vasile M, et al. Adipocytokines as driving forces in rheumatoid arthritis and related inflammatory diseases? Arthritis Rheum 2011; 63(5): 1159 – 69.
58. Kocabas H, Kocabas V, Buyukbas S, et al. The serum levels of resistin in ankylosing spondylitis patients: a pilot study. Rheumatol Internat 2012; 32(3): 699 – 702.
59. Derdemezis CS, Filippatos TD, Voulgari PV, et al. Leptin and adiponektin levels in patients with ankylosing spondylitis. The effect of infliximab treatment. Clin Exp Rheumatol 2010; 28(6): 880 – 3.
60. Miranda-Filloy JA, Lopez-Mejias R, Genre F, et al. Adiponektin and resistin serum levels in non-diabetic ankylosing spondylitis patients undergoing TNF-alpha antagonist therapy. Clin Exp Rheumatol 2013; 31(3): 365 – 71.
61. Baatar D, Patel K, Taub DD. The effects of ghrelin on inflammation and the immune system. Mol Cell Endocrinol 2011; 340(1): 44 – 58.
62. Toussirot E, Streit G, Nguyen NU, et al. Adipose tissue, serum adipokines, and ghrelin in patients with ankylosing spondylitis. Metabolism 2007; 56(10): 1383 – 9.
63. Toussirot É, Grandclément É, Gaugler B, et al. Serum Adipokines and Adipose Tissue Distribution in Rheumatoid Arthritis and Ankylosing Spondylitis. A Comparative Study. Front Immunol 2013; 4: 453.
64. Sunahori K, Yamamura M, Yamana J, et al. The S100A8/A9 heterodimer amplifies proinflammatory cytokine production by macrophages via activation of nuclear factor kappa B and p38 mitogen-activated protein kinase in rheumatoid arthritis. Arthritis Res Ther 2006; 8(3): R69.
65. Andrés Cerezo L, Mann H, Pecha O, et al. Decreases in serum levels of S100A8/9 (calprotectin) correlate with improvements in total swollen joint count in patients with recent-onset rheumatoid arthritis. Arthritis Res Ther 2011; 13(4): R122.
66. Foell D, Wittkowski H, Vogl T, et al. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol 2007; 81(1): 28 – 37.
67. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 2007; 81(1): 1 – 5.
68. Goh FG, Midwood KS. Intrinsic danger: activation of Toll-like receptors in rheumatoid arthritis. Rheumatology (Oxford) 2012; 51(1): 7 – 23.
69. Turina MC, Yeremenko N, Paramarta JE, et al. Calprotectin (S100A8/9) as serum biomarker for clinical response in proof-of-concept trials in axial and peripheral spondyloarthritis. Arthritis Res Ther 2014; 16(5): 413.
70. Oktayoglu P, Bozkurt M, Mete N, et al. Elevated serum levels of calprotectin (myeloid-related protein 8/14) in patients with ankylosing spondylitis and its association with disease activity and quality of life. J Investig Med 2014; 62(6): 880 – 4.
71. Maksymowych WP, Landewe R, Conner-Spady B, et al. Serum matrix metalloproteinase 3 is an independent predictor of structural damage progression in patients with ankylosing spondylitis. Arthritis Rheum 2007; 56(6): 1846 – 53.
72. Chen CH, Lin KC, Yu DT, et al. Serum matrix metalloproteinases and tissue inhibitors of metalloproteinases in ankylosing spondylitis: MMP-3 is a reproducibly sensitive and specific biomarker of disease activity. Rheumatology (Oxford) 2006; 45(4): 414 – 20.
73. Yang C, Gu J, Rihl M, et al. Serum levels of matrix metalloproteinase 3 and macrophage colony-stimulating factor 1 correlate with disease activity in ankylosing spondylitis. Arthritis Rheum 2004; 51(5): 691 – 9.
74. Mattey DL, Packham JC, Nixon NB, et al. Association of cytokine and matrix metalloproteinase profiles with disease activity and function in ankylosing spondylitis. Arthritis Res Ther 2012; 14(3): R127.
75. Bay-Jensen AC, Leeming DJ, Kleyer A, et al. Ankylosing spondylitis is characterized by an increased turnover of several different metalloproteinase-derived collagen species: a cross-sectional study. Rheumatol Internat 2012; 32(11): 3565 – 72.
76. Bay-Jensen AC, Wichuk S, Byrjalsen I, et al. Circulating protein fragments of cartilage and connective tissue degradation are diagnostic and prognostic markers of rheumatoid arthritis and ankylosing spondylitis. PLoS ONE 2013; 8(1): e54504.
77. Kim TH, Stone M, Payne U, et al. Cartilage biomarkers in ankylosing spondylitis: relationship to clinical variables and treatment response. Arthritis Rheum 2005; 52(3): 885 – 91.
78. Pedersen SJ, Sørensen IJ, Lambert RGW, et al. Radiographic progression is associated with resolution of systemic inflammation in patients with axial spondylarthritis treated with tumor necrosis factor α inhibitors: A study of radiographic progression, inflammation on magnetic resonance imaging, and circulating biomarkers of inflammation, angiogenesis, and cartilage and bone turnover. Arthritis Rheum 2011; 63(12): 3789 – 800.
79. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013; 19(2): 179 – 92.
80. Goldring SR. Osteoimmunology and bone homeostasis: relevance to spondyloarthritis. Curr Rheumatol Rep 2013; 15(7): 342.
81. de Andrade KR, de Castro GR, Vicente G, et al. Evaluation of circulating levels of inflammatory and bone formation markers in axial spondyloarthritis. Internat Immunopharmacol 2014; 21(2):481 – 6.
82. Kapustin AN, Shanahan CM. Osteocalcin: a novel vascular metabolic and osteoinductive factor? Arterioscler Thromb Vasc Biol 2011; 31(10): 2169 – 71.
83. Almodovar R, Rios V, Ocana S, et al. Association of biomarkers of inflammation, cartilage and bone turnover with gender, disease activity, radiological damage and sacroiliitis by magnetic resonance imaging in patients with early spondyloarthritis. Clin Rheumatol 2014; 33(2): 237 – 41.
84. Toussirot E, Dumoulin G, Saas P, et al. Increased tartrate-resistant acid phosphatase serum levels in ankylosing spondylitis and relationship with the inflammatory process. Ann Rheum Dis 2008; 67(3): 430 – 1.
85. Taylan A, Sari I, Akinci B, et al. Biomarkers and cytokines of bone turnover: extensive evaluation in a cohort of patients with ankylosing spondylitis. BMC Musculoskelet Dis Disord 2012; 13: 191.
86. Woo JH, Lee HJ, Sung IH, et al. Changes of clinical response and bone biochemical markers in patients with ankylosing spondylitis taking etanercept. J Rheumatol 2007; 34(8): 1753 – 9.
87. Chen CH, Chen HA, Liao HT, et al. Soluble receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin in ankylosing spondylitis: OPG is associated with poor physical mobility and reflects systemic inflammation. Clin Rheumatol 2010; 29(10): 1155 – 61.
88. Kim H-R, Kim H-Y, Lee S-H. Elevated serum levels of soluble receptor activator of nuclear factors-κB ligand (sRANKL) and reduced bone mineral density in patients with ankylosing spondylitis (AS). Rheumatology (Oxford) 2006; 45(10): 1197 – 200.
89. Gooi JH, Pompolo S, Karsdal MA, et al. Calcitonin impairs the anabolic effect of PTH in young rats and stimulates expression of sclerostin by osteocytes. Bone 2010; 46(6): 1486 – 97.
90. Kim B-J, Bae SJ, Lee S-Y, et al. TNFα mediates the stimulation of sclerostin expression in an estrogen-deficient condition. Biochem Biophys Res Commun 2012; 424(1): 170 – 75.
91. Diarra D, Stolina M, Polzer K, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med 2007; 13(2): 156 – 63.
92. Ustun N, Tok F, Kalyoncu U, et al. Sclerostin and Dkk-1 in patients with ankylosing spondylitis. Acta Reumatol Port 2014; 39(2): 146 – 51.
93. Daoussis D, Liossis SN, Solomou EE, et al. Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis Rheum 2010; 62(1): 150 – 8.
94. Klingberg E, Nurkkala M, Carlsten H, et al. Biomarkers of bone metabolism in ankylosing spondylitis in relation to osteoproliferation and osteoporosis. J Rheumatol 2014; 41(7): 1349 – 56.
95. Korkosz M, Gasowski J, Leszczynski P, et al. High disease activity in ankylosing spondylitis is associated with increased serum sclerostin level and decreased wingless protein-3a signaling but is not linked with greater structural damage. BMC Musculoskelet Disord 2013; 14: 99.
96. Weber GF, Ashkar S, Glimcher MJ, et al. Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science 1996; 271(5248): 509 – 12.
97. Choi ST, Kim JH, Kang E-J, et al. Osteopontin might be involved in bone remodelling rather than in inflammation in ankylosing spondylitis. Rheumatology (Oxford) 2008; 47(12): 1775 – 79.
98. Sari I, Okan T, Akar S, et al. Impaired endothelial function in patients with ankylosing spondylitis. Rheumatology (Oxford) 2006; 45(3): 283 – 6.
99. Lin TT, Lu J, Qi CY, et al. Elevated serum level of IL-27 and VEGF in patients with ankylosing spondylitis and associate with disease activity. Clin Exp Med 2015; 15(2): 227 – 31.
100. Appel H, Janssen L, Listing J, et al. Serum levels of biomarkers of bone and cartilage destruction and new bone formation in different cohorts of patients with axial spondyloarthritis with and without tumor necrosis factor-alpha blocker treatment. Arthritis Res Ther 2008; 10(5): R125.
101. Tosovsky M, Bradna P, Andrys C, et al. The VEGF and BMP-2 levels in patients with ankylosing spondylitis and the relationship to treatment with tumour necrosis factor alpha inhibitors. Acta medica (Hradec Kralove) / Universitas Carolina, Facultas Medica Hradec Kralove 2014; 57(2): 56 – 61.
102. Divecha H, Sattar N, Rumley A, et al. Cardiovascular risk parameters in men with ankylosing spondylitis in comparison with non-inflammatory control subjects: relevance of systemic inflammation. Clin Sci (London) 2005; 109(2): 171 – 6.
103. Taylan A, Sari I, Kozaci DL, et al. Evaluation of various endothelial biomarkers in ankylosing spondylitis. Clin Rheumatol 2012; 31(1): 23 – 8.
104. Haroon N, Maksymowych WP, Rahman P, et al. Radiographic severity of ankylosing spondylitis is associated with polymorphism of the large multifunctional peptidase 2 gene in the Spondyloarthritis Research Consortium of Canada cohort. Arthritis Rheum 2012; 64(4): 1119 – 26.
105. Maksymowych WP, Russell AS. Polymorphism in the LMP2 gene influences the relative risk for acute anterior uveitis in unselected patients with ankylosing spondylitis. Clin Investigat Med 1995; 18(1): 42 – 6.
106. Tsui FW, Tsui HW, Akram A, et al. The genetic basis of ankylosing spondylitis: new insights into disease pathogenesis. Appl Clin Genet 2014; 7: 105 – 15.
107. Ramiro S, van der Heijde D, van Tubergen A, et al. Higher disease activity leads to more structural damage in the spine in ankylosing spondylitis: 12-year longitudinal data from the OASIS cohort. Ann Rheum Dis 2014; 73(8): 1455 – 61.
108. Poddubnyy D, Haibel H, Listing J, et al. Baseline radiographic damage, elevated acute-phase reactant levels, and cigarette smoking status predict spinal radiographic progression in early axial spondylarthritis. Arthritis Rheum 2012; 64(5) : 1388 – 98.
109. Kang KY, Kim IJ, Jung SM, et al. Incidence and predictors of morphometric vertebral fractures in patients with ankylosing spondylitis. Arthritis Res Ther 2014; 16(3): R124.
110. Maksymowych WP, Morency N, Wichuk S, et al. Multiplex assay of a panel of 58 biomarkers in ankylosing spondylitis: Identification of high priority candidates for prediction of structural damage. Arthritis Rheum 2010; 62 (10): 1451.
111. Turina MC, Sieper J, Yeremenko N, et al. Calprotectin serum level is an independent marker for radiographic spinal progression in axial spondyloarthritis. Ann Rheumat Dis 2014; 73(9): 1746 – 48.
112. Vosse D, Landewe R, Garnero P, et al. Association of markers of bone- and cartilage-degradation with radiological changes at baseline and after 2 years follow-up in patients with ankylosing spondylitis. Rheumatology (Oxford) 2008; 47(8): 1219 – 22.
113. Baraliakos X, Landewe R, Heijde DVD, et al. The relationship of biomarkers and radiographic progression in patients with ankylosing spondylitis. Arthritis Rheum 2010; 62(10): 105.
114. Yucong Z, Lu L, Shengfa L, et al. Serum functional dickkopf-1 levels are inversely correlated with radiographic severity of ankylosing spondylitis. Clin Lab 2014; 60(9): 1527 – 31.
115. Appel H, Ruiz-Heiland G, Listing J, et al. Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis and rheumatism 2009; 60(11): 3257 – 62.
116. Chen HA, Chen CH, Lin YJ, et al. Association of bone morphogenetic proteins with spinal fusion in ankylosing spondylitis. The Journal of rheumatology 2010; 37(10): 2126 – 32.
117. Poddubnyy D, Conrad K, Haibel H, et al. Elevated serum level of the vascular endothelial growth factor predicts radiographic spinal progression in patients with axial spondyloarthritis. Ann Rheum Dis 2014; 73(12): 2137 – 43.
118. Bay-Jensen AC, Karsdal MA, Vassiliadis E, et al. Circulating citrullinated vimentin fragments reflect disease burden in ankylosing spondylitis and have prognostic capacity for radiographic progression. Arthritis Rheum 2013; 65(4): 972 – 80.
119. Rudwaleit M, Claudepierre P, Wordsworth P, et al. Effectiveness, safety, and predictors of good clinical response in 1250 patients treated with adalimumab for active ankylosing spondylitis. The J Rheumatol 2009; 36(4): 801 – 8.
120. de Vries MK, van Eijk IC, van der Horst-Bruinsma IE, et al. Erythrocyte sedimentation rate, C-reactive protein level, and serum amyloid a protein for patient selection and monitoring of anti-tumor necrosis factor treatment in ankylosing spondylitis. Arthritis Rheum 2009; 61(11): 1484 – 90.
121. Stone MA, Payne U, Pacheco-Tena C, et al. Cytokine correlates of clinical response patterns to infliximab treatment of ankylosing spondylitis. Annals of the rheumatic diseases 2004; 63(1): 84 – 7.
122. Romero-Sanchez C, Robinson WH, Tomooka BH, et al. Identification of acute phase reactants and cytokines useful for monitoring infliximab therapy in ankylosing spondylitis. Clin Rheumatol 2008; 27(11):1429 – 35.
123. Genre F, López-Mejías R, Miranda-Filloy JA, et al. Antitumour necrosis factor α treatment reduces retinol-binding protein 4 serum levels in non-diabetic ankylosing spondylitis patients. Ann Rheum Dis 2014; 73(5): 941 – 43.
124. Maksymowych WP, Poole AR, Hiebert L, et al. Etanercept exerts beneficial effects on articular cartilage biomarkers of degradation and turnover in patients with ankylosing spondylitis. J Rheumatol 2005; 32(10): 1911-7.
125. Visvanathan S, van der Heijde D, Deodhar A, et al. Effects of infliximab on markers of inflammation and bone turnover and associations with bone mineral density in patients with ankylosing spondylitis. Ann Rheum Dis 2009; 68(2): 175 – 82.
126. Arends S, Spoorenberg A, Houtman PM, et al. The effect of three years of TNFalpha blocking therapy on markers of bone turnover and their predictive value for treatment discontinuation in patients with ankylosing spondylitis: a prospective longitudinal observational cohort study. Arthritis Res Ther 2012; 14(2): R98.
127. Westra J, de Groot L, Plaxton SL, et al. Angiopoietin-2 is highly correlated with inflammation and disease activity in recent-onset rheumatoid arthritis and could be predictive for cardiovascular disease. Rheumatology (Oxford) 2011; 50(4): 665 – 73.
128. Genre F, Miranda-Filloy JA, López-Mejias R, et al. Antitumour necrosis factor-α therapy modulates angiopoietin-2 serum levels in non-diabetic ankylosing spondylitis patients. Ann Rheum Dis 2013; 72(7): 1265 – 67.
129. Kwiatkowski DJ, Mehl R, Izumo S, et al. Muscle is the major source of plasma gelsolin. J Biol Chemistry 1988; 263(17): 8239 – 43.
130. Genre F, Lopez-Mejias R, Miranda-Filloy JA, et al. Gelsolin levels are decreased in ankylosing spondylitis patients undergoing anti-TNF-alpha therapy. Clinical and experimental rheumatology 2014; 32(2): 218 – 24.
131. Carter S, Lories RJ. Osteoporosis: a paradox in ankylosing spondylitis. Curr Osteoporos Rep 2011; 9(3): 112 – 5.
Labels
Dermatology & STDs Paediatric rheumatology RheumatologyArticle was published in
Czech Rheumatology
2015 Issue 4
Most read in this issue
- The relation of rheumatic diseases and their treatment to clinical renal involvement
- Serum biomarkers in axial spondyloarthritis
- Deformation analysis of the right ventricle using speckle tracking in the diagnosis of pulmonary arterial hypertension in patients with systemic sclerosis and mixed connective tissue disease