Reactive oxygen species and their role in the andrological factor of couple fertility
Authors:
P. Turčan 1; P. Pokorný 2; P. Kepič 1; J. Hambálek 1; P. Entnerová 1; J. Kvintová 3; M. Sigmund 4; E. Jurásková Sedlatá 5; Tomáš Fait 6,7
Authors‘ workplace:
Centrum MEDIOL s. r. o., ordinace sexuologie a andrologie, Olomouc
1; Centrum MEDIOL s. r. o., Partnerská a rodinná poradna, Olomouc
2; Katedra psychologie a patopsychologie, Pedagogická fakulta, UP Olomouc
3; Aplikační centrum BALUO, Fakulta tělesné kultury, UP Olomouc
4; Klinika zubního lékařství, LF UP v Olomouci
5; Gynekologicko-porodnická klinika, 2. LF UK a FN Motol, Praha
6; Katedra zdravotnických studií, Vysoká škola polytechnická, Jihlava
7
Published in:
Ceska Gynekol 2024; 89(2): 139-143
Category:
doi:
https://doi.org/10.48095/cccg2024139
Overview
Reactive oxygen species play a significant role in male fertility and infertility. They are essential for physiological processes, but when their concentration becomes excessive, they can be a cause of various sperm pathologies. Seminal leukocytes and pathologically abnormal sperm are the primary sources of oxygen radicals in ejaculate. They negatively affect sperm quality, including DNA fragmentation and sperm motility impairment. Addressing increased concentrations of reactive oxygen species involves various appropriate lifestyle modifications and measures, including the use of antioxidants, treatment of urogenital infections, management of varicocele, weight reduction, and others. In many cases, these interventions can lead to adjustments in the condition and improvement in sperm quality. Such improvements can subsequently lead to enhanced outcomes in assisted reproduction or even an increased likelihood of natural conception. In some instances, the need for donor sperm may be eliminated. However, a key factor is adhering to a sufficiently prolonged treatment, which requires patience on the part of both, the physician and the patient.
Keywords:
infertility – DNA fragmentation – Male infertility – reactive oxygen species – spermatocytes pathology
Sources
1. Sies H, Belousov VV, Chandel NS et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol 2022; 23 (7): 499–515. doi: 10.1038/s41580-022-00456-z.
2. Jakubczyk K, Dec K, Kałduńska J et al. Reactive oxygen species – sources, functions, oxidative damage. Pol Merkur Lekarski 2020; 48 (284): 124–127.
3. Dong C, Fang W, Yi Q et al. A comprehensive review on reactive oxygen species (ROS) in advanced oxidation processes (AOPs). Chemosphere 2022; 308 (Pt 1): 136205. doi: 10.1016/j.chemosphere.2022.136205.
4. Castleton PE, Deluao JC, Sharkey DJ et al. Measuring reactive oxygen species in semen for male preconception care: a scientist perspective. Antioxidants 2022; 11 (2): 264. doi: 10.3390/antiox11020264.
5. Juárez-Rojas L, Casillas F, López A et al. Physiological role of reactive oxygen species in testis and epididymal spermatozoa. Andrologia 2022; 54 (4): e14367. doi: 10.1111/and.14367.
6. Chianese R, Pierantoni R. Mitochondrial Reactive Oxygen Species (ROS) production alters sperm Qquality. Antioxidants 2021; 10 (1): 92. doi: 10.3390/antiox10010092.
7. Cedíková M, Miklíková M, Grundmanová M et al. Sperm mitochondrial function in men with normozoospermia and asthenozoospermia. Ceska Gynekol 2014; 79 (1): 22–28.
8. Khodamoradi K, Kuchakulla M, Narasimman M et al. Laboratory and clinical management of leukocytospermia and hematospermia: a review. Ther Adv Reprod Health 2020; 14: 2633494120922511. doi: 10.1177/263349412 0922511.
9. Ayad B, Omolaoye TS, Louw N et al. Oxidative stress and male infertility: evidence vrom a research perspective. Front Reprod Health2022; 4: 822257. doi: 10.3389/frph.2022.822257.
10. Altakroni B, Nevin C, Carroll M et al. The marker of alkyl DNA base damage, N7-methylguanine, is associated with semen quality in men. Sci Rep 2021; 11 (1): 3121. doi: 10.1038/s41 598-021-81674-x.
11. Sharma RK, Pasqualotto AE, Nelson DR et al. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl 2001; 22 (4): 575–583. doi: 10.1002/j.1939-4640.2001.tb02217.x.
12. Dutta S, Henkel R, Sengupta P et al. Physiological role of ROS in sperm function. In: Parekattil SJ, Esteves SC, Agarwal A (eds). Male infertility: contemporary clinical approaches, andrology, ART and antioxidants. Cham: Springer International Publishing 2020: 337–345.
13. Vessey W, Saifi S, Sharma A et al. Baseline levels of seminal reactive oxygen species predict improvements in sperm function following antioxidant therapy in men with infertility. Clin Endocrinol 2021; 94 (1): 102–110. doi: 10.1111/cen.14328.
14. Asadi A, Ghahremani R, Abdolmaleki A et al. Role of sperm apoptosis and oxidative stress in male infertility: a narrative review. Int J Reprod Biomed 2021; 19 (6): 493–504. doi: 10.18502/ijrm.v19i6.9371.
15. Castellini C, D’Andrea S, Cordeschi G et al. Pathophysiology of mitochondrial dysfunction in human spermatozoa: focus on energetic metabolism, oxidative stress and apoptosis. Antioxidants 2021; 10 (5): 695. doi: 10.3390/antiox 10050695.
16. Su LJ, Zhang JH, Gomez H et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev 2019; 2019: 5080843. doi: 10.1155/2019/5080843.
17. Chakraborty S, Roychoudhury S. Pathological roles of reactive oxygen species in male reproduction. In: Oxidative stress and toxicity in reproductive biology and medicine: a comprehensive update on male infertility-volume one. US: Springer Nature 2022: 41–62.
18. Drevet JR, Hallak J, Nasr-Esfahani MH et al. Reactive oxygen species and their consequences on the structure and function of mammalian spermatozoa. Antioxid Redox Signal 2022; 37 (7–9): 481–500. doi: 10.1089/ars.2021.0235.
19. Bittner L, Chocholatý M, Čechová M et al. Vliv volných radikálů na fertilitu muže a možnosti léčby. Ces Urol 2015; 19 (1): 11–18.
20. Nowicka-Bauer K, Nixon B. Molecular changes induced by oxidative stress that impair human sperm motility. Antioxidants 2020; 9 (2): 134. doi: 10.3390/antiox9020134.
21. Ribeiro JC, Nogueira-Ferreira R, Amado F et al. Exploring the role of oxidative stress in sperm motility: a proteomic network approach. Antioxid Redox Signal 2022; 37 (7–9): 501–520. doi: 10.1089/ars.2021.0241.
22. Dos Santos Hamilton TR, D’Ávila Assumpção ME. Sperm DNA fragmentation: causes and identification. Zygote 2020; 28 (1): 1–8. doi: 10.1017/S0967199419000595.
23. Wang Q, Gu X, Chen Y et al. The effect of sperm DNA fragmentation on in vitro fertilization outcomes of unexplained infertility. Clinics 2023; 78: 100261. doi: 10.1016/ j.clinsp.2023.100261.
24. Deng C, Li T, Xie Y et al. Sperm DNA fragmentation index influences assisted reproductive technology outcome: a systematic review and meta‐analysis combined with a retrospective cohort study. Andrologia 2019; 51 (6): e13263. doi: 10.1111/and.13263.
25. Ribas‐Maynou J, Yeste M, Becerra‐Tomás N et al. Clinical implications of sperm DNA damage in IVF and ICSI: updated systematic review and meta‐analysis. Biol Rev Camb Philos Soc 2021; 96 (4): 1284–1300. doi: 10.1111/brv.12700.
26. Green KA, Patounakis G, Dougherty MP et al. Sperm DNA fragmentation on the day of fertilization is not associated with embryologic or clinical outcomes after IVF/ICSI. J Assist Reprod Genet 2020; 37 (1): 71–76. doi: 10.1007/s10815-019-01632-5.
27. Boitrelle F, Shah R, Saleh R et al. The sixth edition of the WHO manual for human semen analysis: a critical review and SWOT analysis. Life (Basel) 2021; 11 (12): 1368. doi: 10.3390/life 11121368.
28. Zandieh Z, Vatannejad A, Doosti M et al. Comparing reactive oxygen species and DNA fragmentation in semen samples of unexplained infertile and healthy fertile men. Ir J Med Sci 2018; 187 (3): 657–662. doi: 10.1007/s11845-017-1708-7.
29. Santi D, Spaggiari G, Simoni M. Sperm DNA fragmentation index as a promising predictive tool for male infertility diagnosis and treatment management – meta-analyses. Reprod Biomed Online 2018; 37 (3): 315–326. doi: 10.1016/ j.rbmo.2018.06.023.
30. Wood GJ, Cardoso JP, Paluello DV et al. Varicocele-associated infertility and the role of oxidative stress on sperm DNA fragmentation. Front Reprod Health 2021; 3: 695992. doi: 10.3389/frph.2021.695992.
31. Wang K, Gao Y, Wang C et al. Role of oxidative stress in varicocele. Front Genet 2022; 13: 850114. doi: 10.3389/fgene.2022.850114.
32. Belušáková V, Grossová M, Rybánska L et al. Andrologický faktor – rozhodujúci vplyv veku na úspešnosť asistovanej reprodukcie? Ces Urol 2018; 22 (4): 266–274.
33. Leisegang K, Dutta S. Do lifestyle practices impede male fertility? Andrologia 2021; 53 (1): e13595. doi: 10.1111/and.13595.
34. Takeshima T, Usui K, Mori K et al. Oxidative stress and male infertility. Reprod Med Biol 2020; 20 (1): 41–52. doi: 10.1002/rmb2.12353.
35. Škurla M, Rybář R. Obesity and reduced fertility of men. Ceska Gynekol 2018; 83 (3): 212–217.
36. Heráček J, Sobotka V, Urban M. Obesity and male infertility. Ceska Gynekol 2012; 77 (5): 450–456.
37. Mir J, Franken D, Andrabi S et al. Impact of weight loss on sperm DNA integrity in obese men. Andrologia 2018; 50 (4): e12957. doi: 10.1111/and.12957.
38. Yu X, Zhang X, Wang Q. Sexual dysfunction is more common among men who have high sperm DNA fragmentation or teratozoopermia. Sci Rep 2022; 12 (1): 22427. doi: 10.1038/s41598-022-27006-z.
39. Abdelbaki SA, Sabry JH, Al-Adl AM et al. The impact of coexisting sperm DNA fragmentation and seminal oxidative stress on the outcome of varicocelectomy in infertile patients: a prospective controlled study. Arab J Urology 2017; 15 (2): 131–139. doi: 10.1016/j.aju.2017. 03.002.
40. Dutta S, Sengupta P, Slama P et al. Oxidative stress, testicular inflammatory pathways, and male reproduction. Int J Mol Sci 2021; 22 (18): 10043. doi: 10.3390/ijms221810043.
41. Wang S, Zhang K, Yao Y et al. Bacterial infections affect male fertility: a focus on the oxidative stress-autophagy axis. Front Cell Dev Biol 2021; 9: 727812. doi: 10.3389/fcell.2021. 727812.
42. Agarwal A, Leisegang K, Sengupta P. Oxidative stress in pathologies of male reproductive disorders. In: Pathology. US: Elsevier 2020: 15–27.
43. Bittner ML. Vliv myo-inositolu a antioxidantů na fertilitu muže. Urol praxi 2015; 16 (3): 109–112.
44. Cardoso JP, Cocuzza M, Elterman D. Optimizing male fertility: oxidative stress and the use of antioxidants. World J Urol 2019; 37 (6): 1029–1034. doi: 10.1007/s00345-019-02656-3.
45. Hampl R, Drábková P, Kanďár R et al. Vliv oxidačního stresu na mužskou neplodnost. Ceska Gynekol 2012; 77 (3): 241–245.
46. Cannarella R, Condorelli RA, Cimino L et al. Male accessory gland infection: diagnosis and treatment. In: Management of infertility. US: Elsevier 2023: 135–144.
47. Ho CL, Vaughan-Constable DR, Ramsay J et al. The relationship between genitourinary microorganisms and oxidative stress, sperm DNA fragmentation and semen parameters in infertile men. Andrologia 2022; 54 (2): e14322. doi: 10.1111/and.14322.
48. Bernabeu A, Liedo B, Díaz MC et al. Effect of the vaginal microbiome on the pregnancy rate in women receiving assisted reproductive treatment. J Assist Reprod Genet 2019; 36 (10): 2111–2119. doi: 10.1007/s10815-019-01564-0.
49. Graziani A, Grande G, Martin M et al. Chronic prostatitis/chronic pain pelvic syndrome and male infertility. Life 2023; 13 (8): 1700. doi: 10.3390/life13081700.
50. Saleh R, Agarwal A, Shah R. Re: Diagnostic and therapeutic workup of male infertility: results from a Delphi Consensus Panel. Int J Impot Res 2023; 35 (4): 411–412. doi: 10.1038/s41443-022-00564-6.
51. Krátká Z. DNA quality of spermatozoa is negatively affected by male age and represents a risk factor for conception. Ceska Gynekol 2017; 82 (6): 491–495.
52. Esteves SC, Santi D, Simoni M. An update on clinical and surgical interventions to reduce sperm DNA fragmentation in infertile men. Andrology 2020; 8 (1): 53–81. doi: 10.1111/andr.12724.
53. Alahmar AT. The effects of oral antioxidants on the semen of men with idiopathic oligoasthenoteratozoospermia. Clin Exp Reprod Med 2018; 45 (2): 57–66. doi: 10.5653/cerm.2018.45.2.57.
54. Agarwal A, Finelli R, Panner Selvam MK et al. A global survey of reproductive specialists to determine the clinical utility of oxidative stress testing and antioxidant use in male infertility. World J Mens Health 2021; 39 (3): 470–488. doi: 10.5534/wjmh.210025.
55. Tremellen K, Woodman R, Hill et al. Use of a male antioxidant nutraceutical is associated with superior live birth rates during IVF treatment. Asian J Androl 2021; 23 (1): 16–23. doi: 10.4103/aja.aja_41_20.
56. Barik G, Chaturvedula L, Bobby Z. Role of oxidative stress and antioxidants in male infertility: an interventional study. J Hum Reprod Sci 2019; 12 (3): 204–209. doi: 10.4103/jhrs.JHRS_135_18.
ORCID autorů
P. Turčan 0009-0007-4587-0754
J. Kvintová 0000-0003-0014-1666
M. Sigmund 0000-0002-1612-3510
E. Jurásková Sedlatá 0000-0002-6616-6957
T. Fait 0000-0002-2812-9274
Labels
Paediatric gynaecology Gynaecology and obstetrics Reproduction medicineArticle was published in
Czech Gynaecology
2024 Issue 2
Most read in this issue
- New staging of endometrial carcinoma – FIGO 2023
- Usage of the levonorgestrel releasing intrauterine system in perimenopause
- Trophoblast stem cells, trophoblast invasion, and organoids – advancements in gynecology
- Haemorrhagic stroke in pregnancy