Artificial activation of sperm motility in vitro
Authors:
P. Trávník 1-3; M Ješeta 1,4,5; R. Hűttelová 1,6; R. Křen 1,7; L. Landsmann 1,8; A. Nesvadbová 1,9,10; G. Tauwinklová 1,2,11
Authors‘ workplace:
Výbor Asociace reprodukční embryologie z. s.
1; Repromeda s. r. o., Brno
2; IPVZ, Praha
3; Gynekologicko-porodnická klinika LF MU a FN Brno
4; FAPPZ ČZU, Praha
5; Cube IVF, Praha
6; GENNET s. r. o., Praha
7; UNICA Prague s. r. o., Praha
8; IVF Clinic, Olomouc
9; Přírodovědecká fakulta, UP v Olomouci
10; Ústav histologie a embryologie, LF MU, Brno
11
Published in:
Ceska Gynekol 2024; 89(2): 134-138
Category:
doi:
https://doi.org/10.48095/cccg2024134
Overview
Aim: The sperm activation method is a modern methodological approach that is used more and more often in practice. The number of studies focused on methods of artificial activation of human sperm motility are constantly increasing. Standard sperm selection methods can fail in some cases, among other things, because very young sperm are isolated that have not yet completed their development. In these cases, artificial stimulation of their movement can have a positive effect and greatly facilitate and faster the process of selecting suitable sperm. Methylxanthines are most often used as activating agents. However, opinions on the safety of using these substances on sperm are not uniform. The aim of the thesis is to present current knowledge about artificial activation of sperm motility for in vitro fertilization and subsequent embryonic development. Methodology: Research of relevant literature in Web of Science, Scopus, PubMed/Medline databases. Results and conclusion: The literature analysis shows that this method is safe and effective in the selection of immotile spermatozoa. Scientific studies have been conducted to verify the safety and reliability of this method. The conclusion of these studies is the positive impact of this method of selection, especially in cases of sperm obtained from testicular tissue after method testicular sperm extraction. In these cases, the method of artificial sperm activation facilitated and accelerated the selection of sperm before intracytoplasmic sperm injection. Undamaged spermatozoa, which are immobile due to incomplete maturation, were activated.
Keywords:
spermatozoa – In vitro fertilization – motility – theophylline
Sources
1. Yovich JM, Edirisinghe WR, Cummins JM et al. Influence of pentoxifylline in severe male factor infertility. Fertil Steril 1990; 53 (4): 715–722. doi: 10.1016/s0015-0282 (16) 53470-0.
2. Imoedemhe DA, Sigue AB, Pacpaco EA et al. Successful use of the sperm motility enhancer 2-deoxyadenosine in previously failed human in vitro fertilization. J Assist Reprod Genet 1992; 9 (1): 53–56. doi: 10.1007/BF01204115.
3. Tesarik J, Mendoza C, Carreras A. Effects of phosphodiesterase inhibitors caffeine and pentoxifylline on spontaneous and stimulus-induced acrosome reactions in human sperm. Fertil Steril 1992; 58 (6): 1185–1190. doi: 10.1016/s0015-0282 (16) 55567-8.
4. Sousa AP, Amaral A, Baptista M et al. Not all sperm are equal: functional mitochondria characterize a subpopulation of human sperm with better fertilization potential. PLoS One 2011; 6 (3): e18112. doi: 10.1371/journal.pone.0018112.
5. Oseguera-López I, Ruiz-Díaz S, Ramos-Ibeas P et al. Novel techniques of sperm selection for improving IVF and ICSI outcomes. Front Cell Dev Biol 2019; 7: 298. doi: 10.3389/fcell.2019.00298.
6. Sakkas D, Ramalingam M, Garrido N et al. Sperm selection in natural conception: what can we learn from Mother Nature to improve assisted reproduction outcomes? Hum Reprod Update 2015; 21 (6): 711–726. doi: 10.1093/humupd/ dmv042.
7. Verheyen G, Popovic-Todorovic B, Tournaye H. Processing and selection of surgically-retrieved sperm for ICSI: a review. Basic Clin Androl 2017; 27: 6. doi: 10.1186/s12610-017-0050-2.
8. Zhu J, Tsirigotis M, Pelekanos M et al. In vitro maturation of human testicular spermatozoa. Hum Reprod 1996; 11 (1): 231–232. doi: 10.1093/oxfordjournals.humrep.a019030.
9. Turner RM. Tales from the tail: what do we really know about sperm motility? J Androl 2003; 24 (6): 790–803. doi: 10.1002/j.1939-4640.2003.tb03123.x.
10. Turner RM. Moving to the beat: a review of mammalian sperm motility regulation. Reprod Fertil Dev 2006; 18 (1–2): 25–38. doi: 10.1071/rd05120.
11. Buffone MG, Wertheimer EV, Visconti PE et al. Central role of soluble adenylyl cyclase and cAMP in sperm physiology. Biochim Biophys Acta 2014; 1842 (12 Pt B): 2610–2620. doi: 10.1016/j.bbadis.2014.07.013.
12. Vadnais ML, Aghajanian HK, Lin A et al. Signaling in sperm: toward a molecular understanding of the acquisition of sperm motility in the mouse epididymis. Biol Reprod 2013; 89 (5): 127. doi: 10.1095/biolreprod.113.110163.
13. Tash JS, Means AR. Regulation of protein phosphorylation and motility of sperm by cyclic adenosine monophosphate and calcium. Biol Reprod 1982; 26 (4): 745–763. doi: 10.1095/biolreprod26.4.745.
14. Tash JS, Means AR. Cyclic adenosine 3’,5’ monophosphate, calcium and protein phosphorylation in flagellar motility. Biol Reprod 1983; 28 (1): 75–104. doi: 10.1095/biolreprod28.1.75.
15. Kaupp UB, Strünker T. Signaling in sperm: more different than similar. Trends Cell Biol 2017; 27 (2): 101–109. doi: 10.1016/j.tcb.2016.10.002.
16. Pereira R, Sá R, Barros A et al. Major regulatory mechanisms involved in sperm motility. Asian J Androl 2017; 19 (1): 5–14. doi: 10.4103/10 08-682X.167716.
17. Lefièvre L, de Lamirande E, Gagnon C. Presence of cyclic nucleotide phosphodiesterases PDE1A, existing as a stable complex with calmodulin, and PDE3A in human spermatozoa. Biol Reprod 2002; 67 (2): 423–430. doi: 10.1095/biolreprod67.2.423.
18. Tardif S, Madamidola OA, Brown SG et al. Clinically relevant enhancement of human sperm motility using compounds with reported phosphodiesterase inhibitor activity. Hum Reprod 2014; 29 (10): 2123–2135. doi: 10.1093/humrep/deu196.
19. Ibis E, Hayme S, Baysal E et al. Efficacy and safety of papaverine as an in vitro motility enhancer on human spermatozoa. J Assist Reprod Genet 2021; 38 (6): 1523–1537. doi: 10.1007/s10815-021-02160-x.
20. Lefièvre L, de Lamirande E, Gagnon C. The cyclic GMP-specific phosphodiesterase inhibitor, sildenafil, stimulates human sperm motility and capacitation but not acrosome reaction. J Androl 2000; 21 (6): 929–937.
21. Kovacic B, Vlaisavljevic V, Reljic M. Clinical use of pentoxifylline for activation of immotile testicular sperm before ICSI in patients with azoospermia. J Androl 2006; 27 (1): 45–52. doi: 10.2164/jandrol.05079.
22. Taşdemir I, Taşdemir M, Tavukçuoğlu S. Effect of pentoxifylline on immotile testicular spermatozoa. J Assist Reprod Genet 1998; 15 (2): 90–92. doi: 10.1007/BF02766832.
23. Liu J, Nagy Z, Joris H et al. Analysis of 76 total fertilization failure cycles out of 2732 intracytoplasmic sperm injection cycles. Hum Reprod 1995; 10 (10): 2630–2636.
24. Esfandiari N, Javed MH, Gotlieb L et al. Complete failed fertilization after intracytoplasmic sperm injection – analysis of 10 years’ data. Int J Fertil Womens Med 2005; 50 (4): 187–192.
25. Ebner T, Tews G, Mayer RB et al. Pharmacological stimulation of sperm motility in frozen and thawed testicular sperm using the dimethylxanthine theophylline. Fertil Steril 2011; 96 (6): 1331–1336. doi: 10.1016/j.fertnstert.2011. 08.041.
26. Ebner T, Shebl O, Mayer RB et al. Healthy live birth using theophylline in a case of retrograde ejaculation and absolute asthenozoospermia. Fertil Steril 2014; 101 (2): 340–343. doi: 10.1016/ j.fertnstert.2013.10.006.
27. de Mendoza MV, González-Utor AL, Cruz N et al. In situ use of pentoxifylline to assess sperm vitality in intracytoplasmic sperm injection for treatment of patients with total lack of sperm movement. Fertil Steril 2000; 74 (1): 176–177. doi: 10.1016/s0015-0282 (00) 00559-8.
28. Aydos K, Aydos OS. Sperm selection procedures for optimizing the outcome of ICSI in patients with NOA. J Clin Med 2021; 10 (12): 2687. doi: 10.3390/jcm10122687.
29. York RG, Randall JL, Scott WJ Jr. Teratogenicity of paraxanthine (1,7-dimethylxanthine) in C57BL/6J mice. Teratology 1986; 34 (3): 279–282. doi: 10.1002/tera.1420340307.
30. Purpura M, Jäger R, Falk M. An assessment of mutagenicity, genotoxicity, acute-, subacute and subchronic oral toxicity of paraxanthine (1,7-dimethylxanthine). Food Chem Toxicol 2021; 158: 112579. doi: 10.1016/ j.fct.2021.112579.
31. GM501 SpermMobil – Firemní návod. 2023 [online]. Available from: https: //mail.planer.com/__80258426005B6A5E.nsf/0/ 5D7B42F886764AFB8025 856000357A88/$File/ Gi140_V1-Sperm-Mobil.pdf.
32. Barnes PJ. Theophylline. Am J Respir Crit Care Med 2013; 188 (8): 901–906. doi: 10.1164/rccm. 201302-0388PP.
33. Apgar JL, Tarka SM Jr. Methylxanthine composition and consumption patterns of cocoa and chocolate products and their uses. In: Spiller GA (ed). Caffeine. Boca Raton (FL): CRC Press 1998: 171.
34. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Coffee, tea, mate, methylxanthines and methylglyoxal. IARC monographs on the evaluation of carcinogenic risks to humans. Lyon (FR): International Agency for Research on Cancer 1991; 51: 391–419.
ORCID autorů
P. Trávník 0000-0002-2966-923X
M. Ješeta 0000-0003-1778-3454
R. Hüttelová 0009-0001-1877-1060
R. Křen 0009-0002-3534-7816
L. Landsmann 0000-0001-5984-1232
A. Nesvadbová 0000-0001-7854-4268
G. Tauwinklová 0009-0001-3024-6357
Labels
Paediatric gynaecology Gynaecology and obstetrics Reproduction medicineArticle was published in
Czech Gynaecology
2024 Issue 2
Most read in this issue
- New staging of endometrial carcinoma – FIGO 2023
- Trophoblast stem cells, trophoblast invasion, and organoids – advancements in gynecology
- Usage of the levonorgestrel releasing intrauterine system in perimenopause
- Haemorrhagic stroke in pregnancy