Intra-amniální zánět u předčasného odtoku plodové vody před termínem porodu je spojen se zvýšením hladin sCD93 v plodové vodě
Authors:
R. Spacek 1; M. Kacerovský 2,3; C. Andrýs 4; O. Souček 4; R. Kukla 5; R. Bolehovská 5; I. Musilová 2
Authors‘ workplace:
Department of Obstetrics and Gynecology, Faculty of Medicine, Ostrava University, University Hospital Ostrava
1; Department of Obstetrics and Gynecology, Faculty of Medicine, Charles University, University Hospital Hradec Kralove
2; Biomedical Research Center, University Hospital Hradec Kralove
3; Department of Clinical Immunology and Allergy, Faculty of Medicine, Charles University, University Hospital Hradec Kralove
4; Institute of Clinical Biochemistry and Dia gnostics, Faculty of Medicine, Charles University, University Hospital Hradec Kralove
5
Published in:
Ceska Gynekol 2022; 87(6): 388-395
Category:
Original Article
doi:
https://doi.org/10.48095/cccg2022388
Overview
Cíl: Stanovit hladiny solubilní formy CD93 (sCD93) v plodové vodě u pacientek s předčasným odtokem plodové vody (PPROM – preterm prelabor rupture of membranes) s ohledem na přítomnost mikrobiální invaze do amniální dutiny (MIAC – microbial invasion of the amniotic cavity) a/nebo intraamniálního zánětu. Metody: Do studie bylo zahrnuto celkem144 žen s jednočetným těhotenstvím komplikovaným PPROM. Plodová voda byla získána amniocentézou. MIAC byla stanovena kultivačními a nekultivačními technikami. Intraamniální zánět byl stanoven hladinou interleukinu 6 ≥ 3 000 pg/ml v plodové vodě. Ženy byly rozděleny do následujících skupin: i) intraamniální infekce, ii) sterilní intraamniální zánět, iii) kolonizace a iv) negativní plodová voda. Hladiny sCD93 v plodové vodě byly stanoveny pomocí testu ELISA. Výsledky: Hladiny sCD93 v plodové vodě se lišily mezi skupinami žen s PPROM s intraamniální infekcí, sterilním intraamniálním zánětem, kolonizací a negativní plodovou vodou (intraamniální infekce: medián 22,3 ng/ml, sterilní intraamniální zánět: medián 21,0 ng/ml, kolonizace amniové dutiny: 8,7 ng/ml, negativní plodová voda: medián 8,7 ng/ml; p < 0,0001). Závěr: Intraamniální zánět u PPROM, bez ohledu na přítomnost, či chybení MIAC, je spojen se zvýšením hladin sCD93 v plodové vodě.
Klíčová slova:
předčasný porod – interleukin 6 – apoptóza – monocyt – neutrofil – receptor
Sources
1. Mercer BM. Preterm premature rupture of the membranes. Obstet Gynecol 2003; 101 (1): 178–193. doi: 10.1016/s0029-7844 (02) 02 366-9.
2. Mercer BM. Preterm premature rupture of the membranes: current approaches to evaluation and management. Obstet Gynecol Clin North Am 2005; 32 (3): 411–428. doi: 10.1016/j.ogc.2005.03.003.
3. Waters TP, Mercer B. Preterm PROM: prediction, prevention, principles. Clin Obstet Gynecol 2011; 54 (2): 307–312. doi: 10.1097/GRF. 0b013e318217d4d3.
4. Cobo T, Kacerovsky M, Holst RM et al. Intra-amniotic inflammation predicts microbial invasion of the amniotic cavity but not spontaneous preterm delivery in preterm prelabor membrane rupture. Acta Obstet Gynecol Scand 2012; 91 (8): 930–935. doi: 10.1111/j.1600- 0412.2012.01427.x.
5. Jacobsson B, Mattsby-Baltzer I, Andersch B et al. Microbial invasion and cytokine response in amniotic fluid in a Swedish population of women with preterm prelabor rupture of membranes. Acta Obstet Gynecol Scand 2003; 82 (5): 423–431. doi: 10.1034/j.1600-0412.2003.00157.x.
6. Oh KJ, Lee KA, Sohn YK et al. Intraamniotic infection with genital mycoplasmas exhibits a more intense inflammatory response than intraamniotic infection with other microorganisms in patients with preterm premature rupture of membranes. Am J Obstet Gynecol 2010; 203 (3): 211.e1–211.8. doi: 10.1016/j.ajog.2010.03.035.
7. Cobo T, Kacerovsky M, Palacio M et al. Intra-amniotic inflammatory response in subgroups of women with preterm prelabor rupture of the membranes. PLoS One 2012; 7 (8): e43677. doi: 10.1371/journal.pone.0043677.
8. Musilova I, Kutova R, Pliskova L et al. Intra amniotic inflammation in women with preterm prelabor rupture of membranes. PLoS One 2015; 10 (7): e0133929. doi: 10.1371/journal.pone.0133929.
9. Romero R, Miranda J, Chaemsaithong P et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2015; 28 (12): 1394–1409. doi: 10.3109/14767058.2014. 958463.
10. DiGiulio DB, Romero R, Kusanovic JP et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol 2010; 64 (1): 38–57. doi: 10.1111/j.1600-0897.2010.00830.x.
11. Dulay AT, Buhimschi CS, Zhao G et al. Soluble TLR2 is present in human amniotic fluid and modulates the intraamniotic inflammatory response to infection. J Immunol 2009; 182 (11): 7244–7253. doi: 10.4049/jimmunol.0803517.
12. Kacerovsky M, Andrys C, Hornychova H et al. Amniotic fluid soluble Toll-like receptor 4 in pregnancies complicated by preterm prelabor rupture of the membranes. J Matern Fetal Neonatal Med 2012; 25 (7): 1148–1155. doi: 10.3109/ 14767058.2011.626821.
13. Mantovani A, Garlanda C, Bottazzi B. Pentraxin 3, a non-redundant soluble pattern recognition receptor involved in innate immunity. Vaccine 2003; 21 (Suppl 2): S43–S47. doi: 10.1016/s0264-410x (03) 00199-3.
14. Stahl PD, Ezekowitz RA. The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol 1998; 10 (1): 50–55. doi: 10.1016/s0952-7915 (98) 80031-9.
15. Imler JL, Hoffmann JA. Signaling mechanisms in the antimicrobial host defense of Drosophila. Curr Opin Microbiol 2000; 3 (1): 16–22. doi: 10.1016/s1369-5274 (99) 00045-4.
16. Cruciani L, Romero R, Vaisbuch E et al. Pentraxin 3 in amniotic fluid: a novel association with intra-amniotic infection and inflammation. J Perinat Med 2010; 38 (2): 161–171. doi: 10.1515/jpm.2009.141.
17. Mazaki-Tovi S, Romero R, Vaisbuch E et al. Adiponectin in amniotic fluid in normal pregnancy, spontaneous labor at term, and preterm labor: a novel association with intra-amniotic infection/inflammation. J Matern Fetal Neonatal Med 2010; 23 (2): 120–130. doi: 10.3109/14767050903026481.
18. Cobo T, Palacio M, Martínez-Terrón M et al. Clinical and inflammatory markers in amniotic fluid as predictors of adverse outcomes in preterm premature rupture of membranes. Am J Obstet Gynecol 2011; 205 (2): 126.e1–126.e8. doi: 10.1016/j.ajog.2011.03.050.
19. Rosenberg VA, Buhimschi IA, Dulay AT et al. Modulation of amniotic fluid activin-a and inhibin-a in women with preterm premature rupture of the membranes and infection-induced preterm birth. Am J Reprod Immunol 2012; 67 (2): 122–131. doi: 10.1111/j.1600-0897. 2011.01074.x.
20. Kacerovsky M, Andrys C, Drahosova M et al. Soluble Toll-like receptor 1 family members in the amniotic fluid of women with preterm prelabor rupture of the membranes. J Matern Fetal Neonatal Med 2012; 25 (9): 1699–1704. doi: 10.3109/14767058.2012.658463.
21. Tambor V, Kacerovsky M, Andrys C et al. Amniotic fluid cathelicidin in PPROM pregnancies: from proteomic discovery to assessing its potential in inflammatory complications diagnosis. PLoS One 2012; 7 (7): e41164. doi: 10.1371/journal.pone.0041164.
22. Andrys C, Kacerovsky M, Drahosova M et al. Amniotic fluid soluble Toll-like receptor 2 in pregnancies complicated by preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2013; 26 (5): 520–527. doi: 10.3109/14767 058.2012.741634.
23. Romero R, Kadar N, Miranda J et al. The diagnostic performance of the Mass Restricted (MR) score in the identification of microbial invasion of the amniotic cavity or intra-amniotic inflammation is not superior to amniotic fluid interleukin-6. J Matern Fetal Neonatal Med 2014; 27 (8): 757–769. doi: 10.3109/14767058.2013.844 123.
24. Gomez-Lopez N, Romero R, Garcia-Flores V et al. Amniotic fluid neutrophils can phagocytize bacteria: a mechanism for microbial killing in the amniotic cavity. Am J Reprod Immunol 2017; 78 (4). doi: 10.1111/aji.12723.
25. Gomez-Lopez N, Romero R, Xu Y et al. Neutrophil extracellular traps in the amniotic cavity of women with intra-amniotic Infection: a new mechanism of host defense. Reprod Sci 2017; 24 (8): 1139–1153. doi: 10.1177/19337191166 78690.
26. Gomez-Lopez N, Romero R, Xu Y et al. The immunophenotype of amniotic fluid leukocytes in normal and complicated pregnancies. Am J Reprod Immunol 2018; 79 (4): e12827. doi: 10.1111/aji.12827.
27. Bernard A, Boumsell L. Human leukocyte differentiation antigens. Presse Med 1984; 13 (38): 2311–2316.
28. Fiebig H, Behn I, Gruhn R et al. Characterization of a series of monoclonal antibodies against human T cells. Allerg Immunol (Leipz) 1984; 30 (4): 242–250.
29. Zola H, Swart B, Nicholson I et al. CD molecules 2005: human cell differentiation molecules. Blood 2005; 106 (9): 3123–3126. doi: 10.1182/ blood-2005-03-1338.
30. Zola H, Swart B, Banham A et al. CD molecules 2006 – human cell differentiation molecules. J Immunol Methods 2007; 319 (1–2): 1–5. doi: 10.1016/j.jim.2006.11.001.
31. Chan JK, Ng CS, Hui PK. A simple guide to the terminology and application of leucocyte monoclonal antibodies. Histopathology 1988; 12 (5): 461–480. doi: 10.1111/j.1365-2559.1988.tb01967.x.
32. Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 1989; 74 (7): 2527–2534.
33. Arribas J, Coodly L, Vollmer P et al. Diverse cell surface protein ectodomains are shed by a system sensitive to metalloprotease inhibitors. J Biol Chem 1996; 271 (19): 11376–11382. doi: 10.1074/jbc.271.19.11376.
34. Galkina E, Tanousis K, Preece G et al. L-selectin shedding does not regulate constitutive T cell trafficking but controls the migration pathways of antigen-activated T lymphocytes. J Exp Med 2003; 198 (9): 1323–1335. doi: 10.1084/jem. 20030485.
35. Blobel CP. Remarkable roles of proteolysis on and beyond the cell surface. Curr Opin Cell Biol 2000; 12 (5): 606–612. doi: 10.1016/s0955-067 4 (00) 00139-3.
36. Bohlson SS, Silva R, Fonseca MI et al. CD93 is rapidly shed from the surface of human myeloid cells and the soluble form is detected in human plasma. J Immunol 2005; 175 (2): 1239–1247. doi: 10.4049/jimmunol.175.2.1239.
37. Blackburn JW, Lau DH, Liu EY et al. Soluble CD93 is an apoptotic cell opsonin recognized by alpha x beta 2. Eur J Immunol 2019; 49 (4): 600–610. doi: 10.1002/eji.201847801.
38. Greenlee-Wacker MC, Briseno C, Galvan M et al. Membrane-associated CD93 regulates leukocyte migration and C1q-hemolytic activity during murine peritonitis. J Immunol 2011; 187 (6): 3353–3361. doi: 10.4049/jimmunol.1100803.
39. Khan KA, Naylor AJ, Khan A et al. Multimerin-2 is a ligand for group 14 family C-type lectins CLEC14A, CD93 and CD248 spanning the endothelial pericyte interface. Oncogene 2017; 36 (44): 6097–6108. doi: 10.1038/onc.2017. 214.
40. Fakhari S, Bashiri H, Ghaderi B et al. CD93 is selectively expressed on human myeloma cells but not on B lymphocytes. Iran J Immunol 2019; 16 (2): 142–150. doi: 10.22034/IJI.2019.80257.
41. McGreal EP, Ikewaki N, Akatsu H et al. Human C1qRp is identical with CD93 and the mNI-11 antigen but does not bind C1q. J Immunol 2002; 168 (10): 5222–5232. doi: 10.4049/jimmunol.168.10.5222.
42. Ghebrehiwet B, Peerschke EI. cC1q-R (calreticulin) and gC1q-R/p33: ubiquitously expressed multi-ligand binding cellular proteins involved in inflammation and infection. Mol Immunol 2004; 41 (2–3): 173–183. doi: 10.1016/j.molimm.2004.03.014.
43. McGreal E, Gasque P. Structure-function studies of the receptors for complement C1q. Biochem Soc Trans 2002; 30 (Pt 6): 1010–1014. doi: 10.1042/bst0301010.
44. Bohlson SS, Zhang M, Ortiz CE et al. CD93 interacts with the PDZ domain-containing adaptor protein GIPC: implications in the modulation of phagocytosis. J Leukoc Biol 2005; 77 (1): 80–89. doi: 10.1189/jlb.0504305.
45. Zhang M, Bohlson SS, Dy M et al. Modulated interaction of the ERM protein, moesin, with CD93. Immunology 2005; 115 (1): 63–73. doi: 10.1111/j.1365-2567.2005.02120.x.
46. Ikewaki N, Kulski JK, Inoko H. Regulation of CD93 cell surface expression by protein kinase C isoenzymes. Microbiol Immunol 2006; 50 (2): 93–103. do: 10.1111/j.1348-0421.2006.tb03774.x.
47. Greenlee MC, Sullivan SA, Bohlson SS. CD93 and related family members: their role in innate immunity. Curr Drug Targets 2008; 9 (2): 130–138. doi: 10.2174/138945008783502421.
48. Galvagni F, Nardi F, Spiga O et al. Dissecting the CD93-Multimerin 2 interaction involved in cell adhesion and migration of the activated endothelium. Matrix Biol 2017; 64: 112–127. doi: 10.1016/j.matbio.2017.08.003.
49. Mälarstig A, Silveira A, Wågsäter D et al. Plasma CD93 concentration is a potential novel biomarker for coronary artery disease. J Intern Med 2011; 270 (3): 229–236. doi: 10.1111/j.1365- 2796.2011.02364.x.
50. Youn JC, Yu HT, Jeon JW et al. Soluble CD93 levels in patients with acute myocardial infarction and its implication on clinical outcome. PLoS One 2014; 9 (5): e96538. doi: 10.1371/journal.pone.0096538.
51. Park HJ, Han H, Lee SC et al. Soluble CD93 in serum as a marker of allergic inflammation. Yonsei Med J 2017; 58 (3): 598–603. doi: 10.3349/ymj.2017.58.3.598.
52. Tosi GM, Caldi E, Parolini B et al. CD93 as a potential target in neovascular age-related macular degeneration. J Cell Physiol 2017; 232 (7): 1767–1773. doi: 10.1002/jcp.25689.
53. Strawbridge RJ, Hilding A, Silveira A et al. Soluble CD93 is involved in metabolic dysregulation but does not influence carotid intima-media thickness. Diabetes 2016; 65 (10): 2888–2899. doi: 10.2337/db15-1333.
54. Musilova I, Andrys C, Holeckova M et al. Interleukin-6 measured using the automated electrochemiluminescence immunoassay method for the identification of intra-amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2018; 33 (11): 1919–1926. doi: 10.1080/14767058.2018. 1533947.
55. Fouhy F, Deane J, Rea MC et al. The effects of freezing on faecal microbiota as determined using MiSeq sequencing and culture-based investigations. PloS One 2015; 10 (3): e0119355. doi: 10.1371/journal.pone.0119355.
56. Greisen K, Loeffelholz M, Purohit A et al. PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol 1994; 32 (2): 335–351. doi: 10.1128/jcm.32.2.335-351.1994.
57. Jeon JW, Jung JG, Shin EC et al. Soluble CD93 induces differentiation of monocytes and enhances TLR responses. J Immunol 2010; 185 (8): 4921–4927. doi: 10.4049/jimmunol.0904011.
58. Greenlee MC, Sullivan SA, Bohlson SS. Detection and characterization of soluble CD93 released during inflammation. Inflamm Res 2009; 58 (12): 909–919. doi: 10.1007/s00011- 009-0064-0.
59. Ikewaki N, Tamauchi H, Inoko H. Decrease in CD93 (C1qRp) expression in a human monocyte-like cell line (U937) treated with various apoptosis-inducing chemical substances. Microbiol Immunol 2007; 51 (12): 1189–1200. doi: 10.1111/j.1348-0421.2007.tb04014.x.
60. Harhausen D, Prinz V, Ziegler G et al. CD93/AA4.1: a novel regulator of inflammation in murine focal cerebral ischemia. J Immunol 2010; 184 (11): 6407–6417. doi: 10.4049/ jimmunol.0902342.
61. Gomez-Lopez N, Romero R, Xu Y et al. Are amniotic fluid neutrophils in women with intraamniotic infection and/or inflammation of fetal or maternal origin? Am J Obstet Gynecol 2017; 217 (6): 693.e1–693.e16. doi: 10.1016/ j.ajog.2017.09.013.
Labels
Paediatric gynaecology Gynaecology and obstetrics Reproduction medicineArticle was published in
Czech Gynaecology
2022 Issue 6
Most read in this issue
- Nová kombinovaná perorální antikoncepce obsahující estetrol: přehledový článek evropského panelu odborníků
- Endometrióza v postmenopauze
- Vybrané patologické stavy ovlivňující receptivitu endometria
- Karcinom vulvy a jeho recidivy – zásady operační léčby