#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

SALIVARY EXOSOME PROTEOME AS A NEW TOOL FOR THE DIAGNOSIS OF ORAL DISEASES


Authors: G. Laputková 1;  I. Talian 1;  Z. Jendrichovská 1;  V. Schwartzová 2;  Z. Schwartzová 3;  J. Sabo 1
Authors‘ workplace: Ústav lekárskej a klinickej biofyziky, Lekárska fakulta, Univerzita P. J. Šafárika, Košice, Slovenská republika 1;  Klinika stomatológie a maxilofaciálnej chirurgie, Lekárska fakulta, Univerzita P. J. Šafárika, a UNLP, Košice, Slovenská republika 2;  Ústav epidemiológie, Lekárska fakulta, Univerzita P. J. Šafárika, Košice, Slovenská republika 3
Published in: Česká stomatologie / Praktické zubní lékařství, ročník 121, 2021, 3, s. 75-82
Category: Original Article – Clinical Study

Overview

Introduction, aim: Exosomes generated by the endosomal pathway are released by the exocytosis into the extracellular space, including saliva. They contain nucleic acids, proteins and lipids that are transported to different parts of the body. They participate in intercellular communication, whether they support or disrupt various physiological processes.

The aim of this work was to verify the efficiency of the ultracentrifugation method of isolation of exosomes from saliva, to exctract and identify proteins contained therein, with an emphasis on exosomal proteins related to diseases of the oral cavity or systemic diseases with manifestations in the oral cavity.

Methods: Exosomes were isolated from full unstimulated human saliva by repeated centrifugation steps with washing in phosphate buffer followed by methanol/chloroform protein precipitation. Proteins were identified by a bottom-up approach using mass spectrometry with pre-separation by liquid chromatography.

Results: The identified proteins were classified according to protein classes, molecular functions and biological processes. The most identified proteins were of the protein classes: cytoskeletal proteins, defense/immune proteins and structural proteins and proteins responsible for catalytic activity and structural molecular activity.

Conclusions: Proteins have been classified into groups based on their molecular function and biological processes in which they participate in the human body. Some proteins/family of proteins have been identified that may be of interest in investigating the etiology of some oral diseases e.g. annexin A1, zymogen granular protein 16 homologue B, mucin-5B, Ig lambda-3 chain C region, Ig kappa chain C region, Ig alpha-2 chain C region and Ig alpha-1 chain C region.

Keywords:

saliva – Exosomes – proteomics – Oral diseases


Sources

1. Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012; 1820(7): 940–948.

2. Meldolesi J. Exosomes and ectosomes in intercellular communication. Curr Biol. 2018; 28(8): R435–R444.

3. Zheng X, Chen F, Zhang J, Zhang Q, Lin J. Exosome analysis: a promising biomarker system with special attention to saliva. J Membr Biol. 2014; 247(11): 1129–1136.

4. Keller S, Ridinger J, Rupp AK, Janssen JW, Altevogt P. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med. 2011; 9: 86.

5. Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Korvala J, Salo T, Sormunen R, Vered M. Human saliva-derived exosomes: comparing methods of isolation. J Histochem Cytochem. 2015; 63(3): 181–189.

6. Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Salo T, Vered M. Morphological and molecular features of oral fluid-derived exosomes: oral cancer patients versus healthy individuals. J Cancer Res Clin Oncol. 2016; 142(1): 101–110.

7. Byun JS, Hong SH, Choi JK, Jung JK, Lee HJ. Diagnostic profiling of salivary exosomal microRNAs in oral lichen planus patients. Oral Dis. 2015; 21(8): 987–993.

8. Katsiougiannis S, Wong DT. The proteomics of saliva in Sjögren's syndrome. Rheum Dis Clin North Am. 2016; 42(3): 449–456.

9. Zheng X, Chen F, Zhang Q, Liu Y, You P, Sun S, Lin J, Chen N. Salivary exosomal PSMA7: a promising biomarker of inflammatory bowel disease. Protein Cell. 2017; 8(9): 686–695.

10. Lau C, Kim Y, Chia D, Spielmann N, Eibl G, Elashoff D, Wei F, Lin YL, Moro A, Grogan T, Chiang S, Feinstein E, Schafer C, Farrell J, Wong DT. Role of pancreatic cancer-derived exosomes in salivary biomarker development. J Biol Chem. 2013; 288(37): 26888–26897.

11. Sun Y, Xia Z, Shang Z, Sun K, Niu X, Qian L, Fan LY, Cao CX, Xiao H. Facile preparation of salivary extracellular vesicles for cancer proteomics. Sci Rep. 2016; 6: 24669.

12. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015; 43(Database issue): D204–D212.

13. Sugimoto MA, Vago JP, Teixeira MM, Sousa LP. Annexin A1 and the resolution of inflammation: modulation of neutrophil recruitment, apoptosis, and clearance. J Immunol Res. 2016; 2016: 8239258.

14. Kulhavá L, Eckhardt A, Pataridis S, Bartoš M, Foltán R, Mikšík I. Differences of saliva composition in relation to tooth decay and gender. Folia Biol. 2018; 64(5/6): 195–203.

15. Amiri Dash Atan N, Koushki M, Rezaei Tavirani M, Ahmadi NA. Protein-protein interaction network analysis of salivary proteomic data in oral cancer cases. Asian Pac J Cancer Prev. 2018; 19(6): 1639–1645.

16. Foo SL, Yap G, Cui J, Lim LHK. Annexin-A1 – A blessing or a curse in cancer? Trends Mol Med. 2019; 25(4): 315–327.

17. Jou YJ, Hua CH, Lin CD, Lai CH, Huang SH, Tsai MH, Kao JY, Lin CW. S100A8 as potential salivary biomarker of oral squamous cell carcinoma using nanoLC-MS/MS. Clin Chim Acta. 2014; 436: 121–129.

18. Zhang S, Tian L, Ma P, Sun Q, Zhang K, GuanchaoWang, Liu H, Xu B. Potential role of differentially expressed lncRNAs in the pathogenesis of oral squamous cell carcinoma. Arch Oral Biol. 2015; 60(10): 1581–1587.

19. Dickinson A, Saraswat M, Mäkitie A, Silén R, Hagström J, Haglund C, Joenväärä S, Silén S. Label-free tissue proteomics can classify oral squamous cell carcinoma from healthy tissue in a stage-specific manner. Oral Oncol. 2018; 86: 206–215.

20. Holmström SB, Lira-Junior R, Zwicker S, Majster M, Gustafsson A, Åkerman S, Klinge B, Svensson M, Boström EA. MMP-12 and S100s in saliva reflect different aspects of periodontal inflammation. Cytokine. 2019; 113: 155–161.

21. Dommisch H, Skora P, Hirschfeld J, Olk G, Hildebrandt L, Jepsen S. The guardians of the periodontium-sequential and differential expression of antimicrobial peptides during gingival inflammation. Results from in vivo and in vitro studies. J Clin Periodontol. 2019; 46(3): 276–285.

22. Shin MS, Kim YG, Shin YJ, Ko BJ, Kim S, Kim HD. Deep sequencing salivary proteins for periodontitis using proteomics. Clin Oral Investig. 2019; 23(9): 3571–3580.

23. Grant M, Kilsgård O, Åkerman S, Klinge B, Demmer RT, Malmström J, Jönsson D. The human salivary antimicrobial peptide profile according to the oral microbiota in health, periodontitis and smoking. J Innate Immun. 2019; 11(5): 432–444.

24. Bostanci N, Selevsek N, Wolski W, Grossmann J, Bao K, Wahlander A, Trachsel C, Schlapbach R, Öztürk VÖ, Afacan B, Emingil G, Belibasakis GN. Targeted proteomics guided by label-free quantitative proteome analysis in saliva reveal transition signatures from health to periodontal disease. Mol Cell Proteomics. 2018; 17(7): 1392–1409.

25. Hartenbach FARR, Velasquez É, Nogueira FCS, Domont GB, Ferreira E, Colombo APV. Proteomic analysis of whole saliva in chronic periodontitis. J Proteomics. 2020; 213: 103602.

26. Guzeldemir-Akcakanat E, Alkan B, Sunnetci-Akkoyunlu D, Gurel B, Balta VM, Kan B, Akgun E, Yilmaz EB, Baykal AT, Cine N, Olgac V, Gumuslu E, Savli H. Molecular signatures of chronic periodontitis in gingiva: A genomic and proteomic analysis. J Periodontol. 2019; 90(6): 663–673.

27. Hoffmann F, Umbreit C, Krüger T, Pelzel D,Ernst G, Kniemeyer O, Guntinas-Lichius O, Berndt A, von Eggeling F. Identification of proteomic markers in head and neck cancer using MALDI-MS imaging, LC-MS/MS, and immunohistochemistry. Proteomics Clin Appl. 2019; 13(1): e1700173.

28. Wang K, Wang X, Zheng S, Niu Y, Zheng W, Qin X, Li Z, Luo J, Jiang W, Zhou X, Li W, Zhang L. iTRAQ-based quantitative analysis of age-specific variations in salivary proteome of caries-susceptible individuals. J Transl Med. 2018; 16(1): 293.

29. Ai J, Tang Q, Wu Y, Xu Y, Feng T, Zhou R, Chen Y, Gao X, Zhu Q, Yue X, Pan Q, Xu S, Li J, Huang M, Daugherty-Holtrop J, He Y, Xu HE, Fan J, Ding J, Geng M. The role of polymeric immunoglobulin receptor in inflammation-induced tumor metastasis of human hepatocellular carcinoma. J Natl Cancer Inst. 2011; 103(22): 1696–1712.

30. Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006; Chapter 3: Unit 3.22.

31. Skog J, Würdinger T, Van Rijn S,Meijer DH, Gainche L, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008; 10(12): 1470–1476.

32. Beyer C, Pisetsky DS. The role of microparticles in the pathogenesis of rheumatic diseases. Nat Rev Rheumatol. 2010; 6(1): 21–29.

33. Han Y, Jia L, Zheng Y, Li W. Salivary exosomes: emerging roles in systemic disease. Int J Biol Sci. 2018; 14(6): 633–643.

34. Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol Biol. 2015; 1295: 179–209.

Labels
Maxillofacial surgery Orthodontics Dental medicine
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#