Biodegradability of Metal Alloys: in vivo Testing
Authors:
J. Levorová 1; J. Dušková 2; M. Drahoš 1; R. Vrbová 3; J. Kubásek 4; D. Vojtěch 4; M. Bartoš 1; L. Dugová 1; D. Ulmann 1; R. Foltán 1
Authors‘ workplace:
Stomatologická klinika, maxilofaciální chirurgie 1. LF UK a VFN, Praha
1; Patologický ústav 1. LF UK a VFN, Praha
2; Stomatologická klinika, Laboratoř pro výzkum vlastností materiálů 1. LF UK a VFN, Praha
3; Ústav kovových materiálů a korozního inženýrství, VŠCHT, Praha
4
Published in:
Česká stomatologie / Praktické zubní lékařství, ročník 117, 2017, 4, s. 79-84
Category:
Original Article – Experimental Study
Overview
Introduction and aim:
The standard material used for osteosynthesis of the facial skeleton is the titan and its compounds. One of the disadvantages of the conventional material is the need for its extraction in indicated cases. Degradable material offer a solution to the situation. In the past, materials based on polylactic or polyglycolic acid were used for these purposes. It clinically proved to be unsatisfactory. The modern solution is the use of biodegradable metal alloys. The authors present original research on the degradation of metal materials based on magnesium and zinc on the biomodels.
Materials and methods:
A total of 12 animal models (rabbits) were used. Screws of 3 types of metals (Zn-2Mg and WE43 degradable alloys and the titanium as a standard material) were implanted in the rabbit’s tibias. The animals were euthanasied in 4-weeks intervals, samples of bone tissue with an implanted material have been scaned under mikrofocus CT and were histologically examined. The rate of degradation of the materials was examined.
Results:
Time period of degradation of the material WE43 under physiological conditions has been shown to be too short to stabilize the fracture. Material of Zn-2 mg during the 16 weeks showed a minimum ability to degradation. Both materials have demonstrated reasonable biological properties.
Conclusion:
Degradable materials based on magnesium and zinc are from the biological point of view matching materials. The results of this research indicates that the use of both types of alloys does not satisfy the materials requirments, i.e. retained strength for 12–24 weeks and degradation in reasonable time frame..
Keywords:
biodegradable alloys – osteosynthesis – magnesium alloys
Sources
1. Bergsma, J. E., de Bruijn, W. C., Rozema, F. R., Bos, R. R., Boering, G.: Late degradation tissue response to poly(L-lactide) bone plates and screws. Biomaterials, roč. 16, 1995, č. 1, s. 25–31.
2. Charyeva, O., Feyerabend, F., Willumeit, R., Zukowski, D., Gasqueres, C., Szakacs, G., Agha, N. A., Hort, N., Gensch, F., Cecchinato, F., Jimbo, R., Wennerberg, A., Lips, K. S.: In vitro resorption of magnesium materials and its effect on surface and surrounding environment. MOJ Toxicol., roč. 1, 2015, č. 1, s. 1–6.
3. Dee, K. C., Puleo, D. A., Bizios, R.: Protein-surface interactions. In Dee, K. C., a kol: An introduction to tissue-biomaterial interactions. New Jersey, Willey-Liss, Inc., 2002, s. 37–52.
4. Hänzi, A. C., Gerber, I., Schinhammer, M., Löffler, J. F., Uggowitzer, P. J.: On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. Acta Biomater., roč. 6, 2010, č. 5, s. 1824–1833.
5. Haug, R. H.: Design and function of implants. In Ehrenfeld, M., a kol: Principles of internal fixation of the craniomaxillofacial skeleton trauma and orthognatic surgery. New York, Thieme, 2012, s. 53–81.
6. Hewitt, C., Innes, D., Savory, J., Wills, M.: Normal biochemical and hematological values in New Zealand white rabbits. Clin. Chemistry, roč. 8, 1989, č. 35, s. 1777–1779.
7. Krause, A., Von der Hoh, N., Bormann, D., Krause, C., Bach, F. W., Windhagen, H., Meyer-Lindenberg, A.: Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae. J. Materials Science, roč. 45, 2010, č. 1, s. 624.
8, Kubásek, J., Vojtěch, D., Lipov, J., Ruml, T.: Structure, mechanical properties, corrosion behavior and cytotoxicity of biodegradable Mg–X (X=Sn, Ga, In) alloys. Materials Science and Engineering C, roč. 33, 2013, č. 4, s. 2421–2432.
9. Kuhlmann, J., Bartsch, I., Willbold, E., Schichardt, S., Holz, O., Hort, N., Höche, D., Heineman, W. R., Witte, F.: Fast escape of hydrogen from gas cavities around corroding magnesium implants. Acta Biomaterialia, roč. 9, 2013, č. 10, s. 8714–8721.
10. Marukawa, E., Tamai, M., Takahashi, Y., Hatakeyama, I., Sato, M., Higuchi, Y., Kakidachi, H., Taniguchi, H., Sakamoto, T., Honda, J., Omura, K., Harada, H.: Comparison of magnesium alloys and poly-l-lactide screws as degradable implants in a canine fracture model. J. Biomed. Mater. Res. B. Appl. Biomater., roč. 104, 2016, č. 7, s. 1282–1289.
11. Pichler, K., Kraus, T., Martinelli, E., Sadoghi, P., Musumeci, G., Uggowitzer, P. J., Weinberg, A. M.: Cellular reactions to biodegradable magnesium alloys on human growth plate chondrocytes and osteoblasts. Int. Orthop., roč. 38, 2014, č. 4, s. 881–889.
12. Reifenrath, J., Bormann, D., Meyer-Lindenberg, A. Magnesium alloys as promising degradable implant materials in orthopaedic research. In Czerwinski, F.: Magnesium alloys – corrosion and surface treatments. Berlin, InTech, 2011, s. 93–108.
13. Richards, R. G., Disegi, A. J.: Metals, surfaces, and tissue inter-actions. In Ehrenfeld M.: Principles of Internal Fixation of the Craniomaxillofacial Skeleton Trauma and Orthognatic Surgery. New York, Thieme, 2012, s 39–44.
14. Vojtěch, D., Kubásek, J.: Structure, mechanical and corrosion properties of magnesium alloys for medical application. Acta Metallurcica Slovaca, roč. 3, 2013, č. 1, s. 82–89.
15. Windhagen, H., Radtke, K., Weizbauer, A., Ediekmann, J., Noll, Y., Kreimeyer, U., Schavan, R., Stukenborg-Colsman, C., Waizy, H.: Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. BioMedical Engineering OnLine, roč. 12, 2013, č. 1, s. 62.
16. Witte, F., Haferkamp, H., Kaese, V., Windhagen, H.: In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, roč. 17, 2005, č. 26, s. 3557–3563.
17. Witte, F., Ulrich, H., Rudert, M., Willbold, E.: Biodegradable magnesium scaffolds: Part I appropriate inflammatory response. J. Biomed. Mater. Res. A., roč. 81, 2007, č. 3, s. 748–756.
18. Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U., Willumeit, R., Feyerabend, F.: Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, roč. 12, 2008, č. 5, s. 63–72.
19. Xue, A., Koshy, J. C., Weathers, W. M., Wolfswinkel, E. M., Kaufman, Y., Sharabi, S. E., Brown, R. H., Hicks, M. J., Hollier, L. H.: Local foreign-body reaction to commercial biodegradable implants: an in vivo animal study. Craniomaxillofac Trauma Reconstr., roč. 7, 2014, č. 1,. s. 27–34.
20. Zheng, Y.: in vivo testing of biodegradable Mg alloy implants. In Zheng, Y.: Magnesium alloys as degradable biomaterials. Boca Raton, CRC Press, 2016, s. 421–456.
Labels
Maxillofacial surgery Orthodontics Dental medicineArticle was published in
Czech Dental Journal
2017 Issue 4
Most read in this issue
-
Parallelly occurring lesions on the surface of the tongue
(Review) -
Residual Natal Tooth
(Case Report) -
Surgical treatment of periodontal intrabony defects with calcium sulphate in combination with beta tricalcium phosphate
(A 12-month retrospective clinical evaluation) - Biodegradability of Metal Alloys: in vivo Testing