Makrodesign of Implant – Types and Shapes of Threads Used and their Evaluation Using Finite Element Analysis
Authors:
L. Dzan 1; P. Henyš 2; L. Čapek 2; A. Šimůnek 3
Authors‘ workplace:
Krajská nemocnice Liberec a. s., Oddělení ústní, čelistní a obličejové chirurgie
1; Technická univerzita Liberec, Fakulta strojní, Katedra mechaniky, pružnosti a pevnosti
2; Stomatologická klinika LF UK a FN, Hradec Králové
3
Published in:
Česká stomatologie / Praktické zubní lékařství, ročník 113, 2013, 4, s. 88-91
Category:
Original Article – Experimental Study
Věnováno prof. MUDr. Jiřímu Mazánkovi, DrSc., k životnímu jubileu
Overview
Introduction, Aim:
Mechanical transfer of load onto the bone affects, besides implant material properties (microdesign), especially the type of thread used and its parameters (macrodesign). There are four basic types of thread: a) metric, b) flat, c) saw-tooth, d) inverted saw-tooth and two modified shapes as specified in standard ISO TC 150: e) ISO Shallow HA cortical, and f) ISO Deep HB cancellous. Mechanical transfer is a characteristic of the rate of mechanical stress transfer from thread to bone, which is less than one. The value of one constitutes an ideal situation but due to different strengths and elasticities in the bone and in the thread material, respectively, this value is difficult to achieve.
Two objectives were set for the study. The one was to establish stress (tensile, compressive, and shear) distribution with the most used types of dental implant threads at the implant bone contact. The other objective was to characterize mechanical compatibility (or mechanical transfer of load from implant onto adjacent bone) with the same types of thread.
Methods:
The Finite Element Method using MSC Marc (MSC Software s.r.o.) program and methodology by Amit Gefen were utilized while the entire implant bone contact length was analysed.
The model generation process consists of three stages.
- Definition of boundary conditions. The load force was F = 100N, direction of force was identical with the implant longitudinal axis while the origin of force was at its cervical area.
- Establishing material model characteristics. Isotropic model, specified with two constants, was used to establish characteristics of material properties: Young’s modulus of elasticity (E) and Poisson’s ratio (μ)
- Task specifications. The model was simulated as a 3D axisymmetric task.
Results:
The ISO Shallow HA thread comes out as the best one from the tensile stress’s point of view whereas the flat thread appears to be the most convenient when considering compressive or shear stress. The results computed using the Finite Element Method with all types of threads simulated confirm that the largest part of stress in threaded connection is found in the foremost cervical turns of thread.
Discussion and Conclusion:
The simulations carried out implicate that the thread cross section shape plays an important role in affecting stress amplitude and distribution adjacent to the bone as well as mechanical compatibility. Our mathematical study does not prove that there is one single ideal type of thread for dental implants.
Key words:
dental implant – design – thread – stress – mechanical compatibility – Finite Element Analysis
Sources
1. Ao, J., Li, T., Liu, Y. a kol.: Optimal design of thread height and width on an immediately loaded cylinder implant: A finite element analysis. Comput. Biol. Med., roč. 40, 2010, č. 8, s. 681–686.
2. Gefen, A.: Optimizing the biomechanical compatibility of orthopedic screws for bone fracture fixation. Med. Eng. Phys., roč. 24, 2002, č. 5, s. 337–347.
3. Hansson, A. S., Werke, B. M.: The implant thread as a retention element in cortical bone: The effect of thread size and thread profile: A finite element study. J. Biomech., roč. 36, 2003, č. 9, s. 1247–1258.
4. Hass, R., Mensdorff Pouilly, N., Mailath, G., Watzek, G.: Bränemark single tooth implants: A preliminary report of 76 implants. J. Prosthet. Dent., roč. 73, 1995, č. 3, s. 274–279.
5. Huang, H. L., Hsu, J. T., Fuh, L. J., a kol.: Biomechanical simulations various surface roughnesses and geometric designs on an immediately loaded dental implant. Comput. Biol. Med., roč. 40, 2010, č. 5, s. 525–532.
6. Chen, L., He, H., Li, Y., a kol.: Finite element analysis of stress at implant-bone interface of dental implants with different structures. Trans. Nonferrous Met. Soc. China, roč. 21, 2011, č. 7, s. 1602–1610.
7. Kong, L., Zhao, Y., Hu, K., a kol.: Selection of the implant thread pitch for optimal biomechanical properties: A three-dimensional finite element analysis. Adv. Eng. Softw., roč. 40, 2009, č. 7, s. 474–478.
8. Lang, A. L., Kang, B., Wang, R. F., Lang, R. B.: Finite element analysis to determine implant preload. J. Prosthet. Dent., roč. 90, 2003, č. 6, s. 539–546.
9. Lee, C. C., Lin, S. C., Kang, M. J., a kol.: Effects of implant threads on the contact area and stress distribution of marginal bone. J. Dent. Sci., roč. 5, 2010, č. 3, s. 156–165.
10. Li, T., Hu, K., Cheng, L., a kol.: Optimum selection of the dental implant diameter and length in the posterior mandible with poor bone quality – A 3D finite element analysis. Appl. Math. Model., roč. 35, 2011, č. 1, s. 446–456.
11. Ma, P., Liu, H. C., Li, D. H., a kol.: Influence of helix angle and density on primary stability of immediately loaded dental implants: Three-dimensional finite element analysis. Zhonghua. Kou. Qiang. Ke. Za. Zhi. (Chinese journal of stomatology), roč. 42, 2007, č. 10, s. 618–621.
12. Malo, P., Nobre, M. A., Lopes, A.: The use of computer-guided flapless implant surgery and four implants placed in immediate function to support a fixed denture: Preliminary results after a mean follow-up period of thirteen months. J. Prosthet. Dent., roč. 97, 2007, č. 6, s. 26–34.
13. Merdji, A., Bouiadrja, B. B., Chikh, O. B., a kol.: Stress distribution in dental prosthesis under an occlusal combined dynamic loading. Mater. Des., roč. 36, 2012, č. 1, s. 705–713.
14. Van Noorf, R.: The future of dental devices is digital. Dent. Mater., roč. 28, 2012, č. 1, s. 3–12.
15. Wolff, J.: Das Gesetz der Transformation der Knochen. A. Hirschwald, Berlin, 1892.
16. Yang, J., Xiang, H.: A three-dimensional finite element study on the biomechanical behavioral of an FGBM dental implant in surrounding bone. J. Biomech., roč. 40, 2007, č. 11, s. 2377–2385.
17. Implants for surgery – Metal bone screws with hexagonal drive connection, spherical under – surface of head, asymmetrical thread – Dimensions, Norma ISO TC 150.
Labels
Maxillofacial surgery Orthodontics Dental medicineArticle was published in
Czech Dental Journal
2013 Issue 4
Most read in this issue
- Prevalence of Dental Anomalies in Orthodontic Patients
- Fibrous Hyperplasias of the Maxilla and Mandible in the Dental Records Archive of the Department of Stomatology and Maxillofacial Surgery in Bratislava
- Microbial Colonization of the Cleft
- Makrodesign of Implant – Types and Shapes of Threads Used and their Evaluation Using Finite Element Analysis