Semisynthetic cellulose derivatives as the base of hydrophilic gel systems
Authors:
Marika Bajerová 1; J. Gajdziok 1; K. Dvořáčková 1; R. Masteiková 1; P. Kollár 2
Authors‘ workplace:
Veterinární a farmaceutická univerzita Brno, Farmaceutická fakulta, Ústav technologie léků
1; Veterinární a farmaceutická univerzita Brno, Farmaceutická fakulta, Ústav humánní farmakologie a toxikologie
2
Published in:
Čes. slov. Farm., 2008; 57, 63-69
Category:
Review Articles
Overview
The field of drug technology widely ulilizes gel systems of high-molecular substances, which have a number of advantages, such as low toxicity, availability, unique physical properties, biocompatibility, mucoadhesivity, and others. Gel systems are used in the field of local as well as general therapy, in both shape-specific and shape-non-specific dosage forms, in medicaments of the first, second, and third generations. An important group of gels employed in pharmacy are hydrophilic gels or hydrogels, most frequently composed of hydrophilic polymers of natural, semisynthetic and synthetic origin. Though cellulose derivatives as the representatives of polymers of semisynthetic origin are used in pharmaceutical technology for a long time, their research continues and their other possible uses are being searched for. Their advantages include especially safety, easy availability, and a relatively low price. The review paper describes selected cellulose derivatives, their properties and uses in pharmaceutical technology with regard to their use in the field of production of gel systems.
Key words:
hydrogel – controlled drug release – cellulose derivatives – oxycellulose
Sources
1. Kikwai, L. et al.: AAPS PharmSciTech 2005; 6, E565–E572.
2. Baumgartner, S. et al.: AAPS PharmSciTech, 2002; 3, 1–8.
3. Chalupová, Z., Masteiková, R., Savickas, A.: Čes. slov. Farm., 2005; 2, 55–59.
4. Kletch, C. M.: Gels and Jellies. In: Swabrick, L, Boylan, J. C. eds. Encyclopedia of Pharmaceutical Technology, vol. II, New York, Marcel Dekker, 2002, 1327–1344.
5. Bartovská, L., Šišková, M.: Fyzikální chemie povrchů a koloidních soustav. 5. vyd. Praha, VŠCHT, 2005, 244 s.
6. Vodrážka, Z.: Fyzikální chemie pro biologické vědy, 1. vyd. Praha, Academia, 1982, 565 s.
7. Lázničková, A., Ďoubal, S., Gasparič, J., Dittrich, M.: Fyzikální chemie pro posluchače farmacie II. díl, Praha, Karolinum, 1997, 126 s.
8. Zatz, J. L., Kushla, G. P.: Gels, In: Lieberman, E. A., Rieger M. M., Banker G. S.: Pharmaceutical Dosage Forms. vol II., New York – Basel – Hong Kong, Marcel Dekker, 399–420.
9. http://www.dermotopics.de/english/issue_2_02_e/da niels_novelgels_2_02_e.htm, 1. 11. 2007
10. Pouchlý, J.: Fyzikální chemie makromolekulárních a koloidních soustav. Praha, VŠCHT, 1998, 198 s.
11. Karout, A., Pierre, A. C.: J. Non-Cryst. Solids, 2007; 353, 2900–2909.
12. Salamat-Miller, N., Chittchang, M., Johnston, P. T.: Advan. Drug Delivery Rev., 2005; 57, 1666–1691.
13. Wang, Q., Li, L.: Carboh. Polym., 2005; 62, 232–238.
14. Ford, L. J.: Int. J. Pharm., 1999; 179, 209–228.
15. Gruntová, Z.: Hydrogely a slizy. In: Chalabala M. et al.: Lékové formy, 2. vyd. Martin, Osveta 1992, 78-89.
16. Peppas, N. A. et al.: Eur. J. Pharm. Biopharm., 2000; 50, 27–46.
17. Valenta, C.: Advan. Drug Delivery Rev., 2005; 57, 1692–1712.
18. Rokhade, P. A. et al.: Carboh. Polym., 2007; 69, 678–687.
19. Rabišková, M. et al.: Čes. slov. Farm., 2003; 5, 211–217.
20. Handbook of pharmaceutical excipients, Rowe, R. C., Sheskey, P. J.,Owen, C. S. eds. 5th ed, London,The Pharmaceutical Press, 2006, s. 136–138.
21. Nussinovitch, A.: Hydrocolloid applications, Gum technology in the food and other industries. London, Blackie Academic & Professional, 1997, 105–123.
22. Marcelo, G., Saiz, E., Tarazona, P. M.: J. Chromatog. A, 2007; 1165, 45–51.
23. Tahala, N. et al.: J. Control. Release, 2005; 108, 386–395.
24. Pak, C. R., Munday, D. L.: Int. J. Pharm., 2002; 237, 215–226.
25. Jones, D.S., et al.: Int. J. Pharm., 1997; 151, 223–233.
26. Wang, L, Tang, X.: Int. J. Pharm., 2008; 350, 181–187.
27. Dong, W., Bodmeier, R.: Int. J. Pharm., 2006; 326, 128–138.
28. Masteiková, R., Chalupová, Z., Savickas, A.: Čes. slov. Farm., 2004; 5, 211–218.
29. Chalabala, M. et al.: Farmaceutické pomocné látky. In: Komárek, P., Rabišková, M.: Technologie léků, 3. vyd. Praha, Galén, 2006; 139.
30. Fawaz, F. et al.: Int. J. Pharm., 2004; 280, 151–162.
31. Shin, S.-Ch., Cho Ch.-W., Yang, K.-H.: Int. J. Pharm., 2004; 287, 73–78.
32. Shin, S.-Ch. et al.: Int. J. Pharm., 2003; 260, 77–81.
33. Dvořáčková, K., Rabišková, M.: Praktické lékárenství, 2006; 2, 93–97.
34. Llabot, M. J., Manzo, H. R., Allemandi, A. D.: AAPS PharmSciTech, 2002; 3 (3),1–6.
35. Dvořáčková, K. et al.: Čes. slov. Farm., 2007; 56, 129–134.
36. Tuleu, C. et al.: Eur. J. Pharm. Sci., 2007; 30, 251–255.
37. Arion, H.: Eur. J. Plast. Surg., 2001; 24, 172–175.
38. Tao, L. S., Desai, A. T.: Drug Discov. Today, 2005; 10, 909–915.
39. Bertram, U., Bodmeier, R.: Eur. J. Pharm. Sci., 2006; 27, 62–71.
40. Liu, X., Chen, T., Liu, L., Li, G.: Sensor Actuator B‑chem., 2006; 113, 106–111.
41. Kennedy, J. F. et al.: Carboh. Polym., 1995; 26, 31–34.
42. Marcelo, G., Saiz, E., Tarazona, P.: J. Chromatog. A, 2007; 1165, 45–51.
43. Kalayni, S. et al.: Carboh. Polym., 2006; 64, 425–432.
44. Gens, L. et al.: Pharm. Acta Helv., 1999; 74, 43–49.
45. Mourtas, S., Haikou, M., Theodoropoulou, M. et al.: J. Colloid Interface Sci., 2008; 317, 611–619.
46. Sassi, A., Isaacs, Ch., Monela, J. B. et al.: J. Pharm. Sci., 2007; 1–17, publikováno online www3.interscience. wiley.com 11. 3. 2008.
47. Lindell, K., Engstrom, S.: Int. J. Pharm., 1993; 95, 219–228.
48. Grabovac, V. et al.: Pharmaceut. res., 2007; 24, 1001–1006.
49. Havelka, P. et al.: Patentový spis: 298350, 2007.
50. Saito, T. et al.: Carboh. Polym., 2005; 61, 414–419.
51. Nada, A. M. A., Hassan, M. L.: J. Appl. Polym. Sci., 2006; 102, 1399–1404.
52. Zhu, L., Kumar, V., Banker, G. S.: Int. J. Pharm., 2001; 223, 35–47.
53. Banker, S. et al.: United States Patent: 5,414,079, 1995.
54. Chavan, V. B., Sarwade, B. D., Varma, A. J.: Carboh. Polym., 2002; 50, 41–45.
55. Banker, G. S., Kumar, V.: United States Patent: 5,405,953, 1995.
56. Chen, F. L., Seethanathan, P: United States Patent: 4,480,089, 1984.
57. Agoub A. A., Morris E. R.: Carboh. Polym., 2008; 71, 416–427.
58. Gert, E. V. et al.: Cellulose, 2005; 12, 517–526.
59. Kaputski, F. N. et al.: Fibre Chem., 2005; 37, 485–489.
60. Banker, S. G., Kumar, V: United States Patent: 5,780,618, 1998.
61. Varma, A. J., Chavan, V. B.: Polym. Degrad. Stabil., 1995; 49, 245–250.
62. Zhu, L., Kumar, V., Banker, G. S.: AAPS Pharm. Sci Tech., 2004; 5, 1–8.
63. Sheleg, S. V. et al.: J. Neuro-Oncol., 2002; 60, 53–59.
64. Banker, G. S., Kumar, V.: United States Patent: 5,780,618, 1998.
65. Stilwell, R. L. et al.: Handbook of Biodegradable Polymers, Domb, J. A., Kost, J., Wiseman, M. D., Amsterdam, Harwood academic publishers, 1997, 291–306.
66. Dimitrijevich, S. D., Tatarko, M., Gracy, R. W.: Carboh. Res., 1990; 195, 247–256.
67. Dimitrijevich, S. D. et al.: Carboh. Res., 1990; 198, 331–341.
Labels
Pharmacy Clinical pharmacologyArticle was published in
Czech and Slovak Pharmacy
2008 Issue 2
Most read in this issue
- Semisynthetic cellulose derivatives as the base of hydrophilic gel systems
- Lactobacilli and their probiotic properties
- Standard prescriptions for the formulation of medicinal preparations in pharmacies I. Suspensions for dermal administration
- Medicinal plants and diabetes mellitus