Thoracolumbar Disc Injury – Indication for Anterior Disc Replacement Using Magnetic Resonance Imaging
Authors:
L. Hrabálek 1; J. Bučil 2; M. Vaverka 1; M. Houdek 1
Authors‘ workplace:
LF UP a FN Olomouc
Neurochirurgická klinika
1; LF UP a FN Olomouc
Radiologická klinika
2
Published in:
Cesk Slov Neurol N 2010; 73/106(3): 238-244
Category:
Original Paper
Overview
A prospective analysis of patients with type A3 thoracolumbar fractures (AO classification), without injuries to the nervous system and with findings of higher grades of intervertebral disc and endplate injuries on MRI, was performed. The aim of the study was to compare clinical outcome and radiological findings after surgery with and without disc replacement and to gather statistically significant results of indications for anterior disc replacement. The group consisted of 83 patients (16– 77 years old, average 48.4 years). The follow‑up period was 18 months. The group of patients was divided into three subgroups according to treatment modality: 1. treated by posterior transpedicular screw fixation; 2. by combined fixation and 3. by anterior disc or vertebral body replacement. The data was subjected to statistical evaluation. The anterior replacement subgroup compared with the transpedicular subgroup showed statistically significant improvement in final clinical outcome and radiological findings. The patients treated by transpedicular fixation suffered more from moderate to severe pain and occasional absence from work, were less able to return to previous employment, unable to return to full‑ time work or were completely disabled and revealed higher rates of kyphotization 18 months post‑injury, compared with patients with anterior replacement. The authors recommend anterior disc or vertebral body replacement in cases of type A3 fractures with intervertebral disc and endplate injuries grade 3 or 4. Post‑traumatic assessment of the disc and vertebral endplate trauma severity using MRI is of significance for surgical treatment of thoracolumbar fractures, particularly for indication of anterior disc replacement.
Key words:
spinal injury – intervertebral disc – magnetic resonance imaging – disc replacement
Sources
1. Haba H, Taneichi H, Kotani Y, Terae S, Abe S, Yoshikawa H et al. Diagnostic accuracy of magnetic resonance imaging for detecting posterior ligamentous complex injury associated with thoracic and lumbar fractures. J Neurosurg 2003; 99 (Suppl 1): 20– 26.
2. Hrabálek L, Bučil J, Vaverka M, Houdek M, Krahulík D, Kalita O. Úskalí diagnostiky a léčby flekčně‑distrakčních poranění hrudní a bederní páteře: prospektivní studie. Cesk Slov Neurol N 2008; 71/ 104(2): 163– 172.
3. Lee HM, Kim HS, Kim DJ, Suk KS, Park JO, Kim NH. Reliability of magnetic resonance imaging in detecting posterior ligament complex injury in thoracolumbar spinal fractures. Spine 2000; 25(16): 2079– 2084.
4. Leferink VJ, Veldhuis EF., Zimmermann KW, Vergert KW, ten Duis HJ. Classificational problems in ligamentary distraction type vertebral fractures: 30% of all B‑type fractures are initially unrecognised. Eur Spine J 2002; 11(3): 246– 250.
5. Levi AD, Hurlbert RJ, Anderson P, Fehlings M, Rampersaud R, Massicotte EM et al. Neurologic deterioration secondary to unrecognized spinal instability following trauma – a multicenter study. Spine 2006; 31(4): 451– 458.
6. Lukáš R, Suchomel P, Šrám J, Endrych L. Klasifikací řízená volba operačního přístupu při operačním léčení zlomenin torakolumbární páteře. Rozhl Chir 2006; 85 (7): 365– 372.
7. Petersilge CA, Pathria MN, Emery SE, Masaryk TJ. Thoracolumbar burst fractures: evaluation with MR imaging. Radiology 1995; 194(1): 49– 54.
8. Terk MR, Hume‑ Neal M, Fraipont, Ahmadi J, Colletti PM. Injury of the posterior ligament complex in patients with acute spinal trauma: evaluation by MR imaging. AJR Am J Roentgenol 1997; 168(6): 1481– 1486.
9. Hrabálek L, Bučil J, Vaverka M, Houdek M, Krahulík D, Kalita O. Indikace přední náhrady meziobratlové ploténky u zlomenin hrudní a bederní páteře s využitím magnetické rezonance – prospektivní studie. Cesk Slov Neurol N 2009; 72/ 105(2): 132– 140.
10. Oner FC, van Gils AP, Faber JAJ, Dhert WJ, Verbout AJ. Some complications of common treatment schemes of thoracolumbar spine fractures can be predicted with magnetic resonance imaging: prospective study of 53 patients with 71 fractures. Spine 2002; 27(6): 629– 636.
11. Oner FC, van Gils AP, Dhert WJ, Verbout AJ. MRI findings of thoracolumbar spine fractures: a categorisation based on MRI examinations of 100 fractures. Skeletal Radiol 1999; 28(8): 433– 443.
12. Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S. A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 1994; 3(4): 184– 201.
13. Denis F, Armstrong GW, Searls K, Matta L. Acute thoracolumbar burst fractures in the absence of neurological deficit: A comparison between operative and nonoperative treatment. Clin Orthop 1984; 189: 142– 149.
14. Thomas KC, Bailey CS, Dvorak MF, Kwon B, Fischer Ch. Comparison of operative and nonoperative treatment for thoracolumbar burst fractures in patients without neurological deficit: a systematic review. J Neurosurg Spine 2006: 4(5): 351– 358.
15. Panjabi MM, Oxland TR, Kifune M, Arand M, Wen L,Chen A. Validity of the three‑ column theory of thoracolumbar fractures: A biomechanic investigation. Spine 1995; 20(10): 1122– 1127.
16. McAfee PC, Yuan HA, Frederickson BE, Lubicky JP. The value of computed tomography in thoracolumbar fractures. An analysis of one hundred consecutive cases and a new classification. J Bone Joint Surg (Am) 1983; 65(4): 461– 473.
17. Cantor JB, Lebwohl NH, Garvey T, Eismont FJ. Nonoperative management of stable thoracolumbar burst fractures with early ambulation and bracing. Spine 1993; 18(8): 971– 976.
18. Chow GH, Nelson BJ, Gebhard JS, Brugman JL, Brown CW, Donaldson DH. Functional outcome of thoracolumbar burst fractures managed with hyperextension casting or bracing and early mobilisation. Spine 1996; 21(18): 2170– 2175.
19. Shen WJ, Shen YS. Nonsurgical treatment of three column‑ thoracolumbar junction burst fractures without neurological deficit. Spine 1999; 24(4): 412– 415.
20. Alanay A, Acaroglu E, Yazici M, Oznur A, Surat A.Short‑ segment pedicle instrumentation of thoracolumbar burst fractures. Does transpedicular intracorporeal grafting prevent early failure? Spine 2001; 26(2): 213– 217.
21. Vaccaro AR, Lehman RA, Hurlbert RJ, Anderson PA, Harris M, Hedlund R et al. A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurological status. Spine 2005; 30(20): 2325– 2333.
22. Hitchon PW, Torner J, Eichholz KM, Beeler SN. Comparison of anterolateral and posterior approaches in the management of thoracolumbar burst fractures. J Neurosurg Spine 2006; 5(2): 117– 125.
23. Horn EM, Feiz‑ Erfan I, Bambakidis NC, Papadopoulos SM, Sonntag VKH, Theodore N. Analysis of conservative management and comparison of neurological outcomes between anterior and posterior approaches for thoracolumbar burst fractures. Barrow Quarterly 2007; 23(1): 4– 11.
24. Knop Ch, Kranabetter T, Reinhold M, Blauth M. Combined posterior‑ anterior stabilisation of thoracolumbar injuries utilising a vertebral body replacing implant. Eur Spine J 2009; 18(7): 949– 963.
25. Korovessis P, Baikousis A, Zacharatos S, Petsinis G, Koureas G, Iliopoulos P. Combined anterior plus posterior stabilization versus posterior short‑ segment instrumentation and fusion for mid‑ lumbar (L2– L4) burst fractures. Spine 2006; 31(8): 859– 868.
26. Payer M. Unstable burst fractures of the thoraco‑ lumbar junction: treatment by posterior bisegmental correction/ fixation and staged anterior corpectomy and titanium cage implantation. Acta Neurochir (Wien) 2006; 148(3): 299– 306.
27. Sasso RC, Best NM, Reilly TM, McGuire RA Jr. Anterior‑ only stabilization of three‑ column thoracolumbar injuries. J Spinal Disord Tech 2005; 18 (Suppl): S7– S14.
28. Wood KB, Bohn D, Mehbod A. Anterior versus posterior treatment of stable thoracolumbar burst fractures without neurologic deficit: A prospective, randomized study. J Spinal Disord Tech 2005; 18 (Suppl): S15– S23.
29. McCormack T, Karaikovic E, Gaines RW. The load sharing classification of spine fractures. Spine 1994; 19(15): 1741– 1744.
30. Parker JW, Lane JR, Karaikovic EE, Gaines RW. Successful short‑ segment instrumentation and fusion for thoracolumbar spine fractures. Spine 2000; 25(9): 1157– 1170.
31. Cripton PA, Jain GM, Wittenberg RH, Nolte LP. Load‑ sharing characteristics of stabilized lumbar spine segments. Spine 2000; 25(2): 170– 179.
32. Oner FC, van der Rijt R, Ramos LMP, Groen GJ, Dhert WJ, Verbout AJ. Correlation of MR images of disc injuries with anatomic sections in experimental thoracolumbar spine fractures. Eur Spine J 1999; 8(3): 194– 198.
33. Alanay A, Yazici M, Acaroglu E, Torhan E, Cila A, Surat A. Course of nonsurgical management of burst fractures with intact posterior ligamentous complex: An MRI study. Spine 2004; 29(21): 2425– 2431.
34. Kerttula LI, Serlo WS, Tervonen OA, Pääkkö EL, Vanharanta HV. Post‑traumatic findings of the spine aftre earlier vertebral fracture in young patients: clinical and MRI study. Spine 2000; 25(9): 1104– 1108.
35. Hrabálek L, Rešková I, Bučil J, Vaverka M, Houdek M. Použití titanových a PEEKových implantátů při ALIF stand‑ alone u degenerativního onemocnění lumbosakrální páteře – prospektivní studie. Cesk Slov Neurol N 2009; 72/ 105(1): 38– 44.
36. Filip M, Veselský P. První klinické zkušenosti v léčbě instability bederní páteře sklokeramickou náhradou meziobratlové ploténky. Act Chir Orthop Traumat Cech 1996; 63: 83– 87.
37. Filip M, Veselský P, Paleček T, Wolný E. Sklokeramická náhrada meziobratlové ploténky u degenerativních onemocnění krční páteře – první zkušenosti. Cesk Slov Neurol N 2000; 63/ 96(1): 31– 36.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2010 Issue 3
Most read in this issue
- Spondylotic Cervical Myelopathy
- Fractures of the Fifth Lumbar Vertebra
- Standardization of the Czech Version of The Confusion Assessment Method for the Intensive Care Unit (CAM‑ICUcz)
- The Use of Regional Cerebral Oximetry as a Non‑ invasive Method to Monitor Neurointensive Care Patients