Potenciálne využitie autofluorescencie telových tekutín pri neinvazívnej diagnostike endometriálneho karcinómu
Authors:
M. Švecová; K. Fiedlerová; M. Mareková; K. Dubayová
Authors‘ workplace:
Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia
Published in:
Klin Onkol 2024; 38(2): 102-109
Category:
Reviews
doi:
https://doi.org/10.48095/ccko2024102
Overview
Východiská: Endometriálny karcinóm (EC) je najčastejšou rakovinou ženského reprodukčného traktu vo vyspelých krajinách. Prognóza a päťročná miera prežitia úzko súvisia so štádiom pri diagnostikovaní. Súčasné rutinné diagnostické metódy EC sú buď málo špecifické alebo pre pacientku nepríjemné, invazívne a bolestivé. Aktuálne je zlatým diagnostickým štandardom endometriálna biopsia. Včasná a neinvazívnu diagnostika EC vyžaduje identifikáciu nových markerov ochorenia a skríningový test aplikovateľný do rutinnej laboratórnej diagnostiky. Aplikácia necielenej metabolomiky v kombinácii s nástrojmi umelej inteligencie a bioštatistiky má potenciál kvalitatívne a kvantitatívne prezentovať metabolóm, ale jej zavedenie do rutinnej diagnostiky je z dôvodu finančnej, časovej aj interpretačnej náročnosti v súčasnosti nereálne. Fluorescenčná spektrálna analýza telových tekutín využíva autofluorescenciu určitých metabolitov na definovanie zloženia metabolómu za fyziologických podmienok. Cieľ: Tento prehľadový článok poukazuje na potenciál fluorescenčnej spektroskopie pri včasnej detekcii EC. Dáta získané trojrozmernou fluorescenčnou spektroskopiou definujú kvantitatívne aj kvalitatívne zloženie komplexného fluorescenčného metabolómu a sú vhodné na identifikáciu biochemických metabolických zmien spojených s karcinogenézou endometria. Autofluorescencia biologických tekutín má perspektívu poskytnúť nové molekulové markery EC. Integráciou algoritmov strojového učenia a umelej inteligencie pri dátovej analýze fluorescenčného metabolómu má táto technika veľký potenciál byť implementovaná do rutinnej laboratórnej diagnostiky.
Klíčová slova:
endometriálny karcinóm – diagnostika– metabolomika – fluorescencia
Sources
1. Bray F, Ferlay J, Soerjomataram I et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68 (6): 394–424. doi: 10.3322/caac.21492.
2. Coll-de la Rubia E, Martinez-Garcia E, Dittmar G et al. Prognostic biomarkers in endometrial cancer: a systematic review and meta-analysis. J Clin Med 2020; 9 (6): 1900. doi: 10.3390/jcm9061900.
3. Rütten H, Verhoef C, van Weelden WJ et al. Recurrent endometrial cancer: local and systemic treatment options. Cancers 2021; 13 (24): 6275. doi: 10.3390/cancers13246275.
4. Talhouk A, McConechy MK, Leung S et al. Confirmation of ProMisE: a simple, genomics-based clinical classifier for endometrial cancer. Cancer 2017; 123 (5): 802–813. doi: 10.1002/cncr.30496.
5. Tichý M, Ptáčková H, Plančíková D et al. BMI and odds of endometrial adenocarcinoma in Czech women – a case control study. Klin Onkol 2019; 32 (4): 281–287. doi: 10.14735/amko2019281.
6. Njoku K, Chiasserini D, Whetton AD et al. Proteomic biomarkers for the detection of endometrial cancer. Cancers 2019; 11 (10): 1572. doi: 10.3390/cancers11101572.
7. Ryan NJ, Glaire MA, Blake D et al. The proportion of endometrial cancers associated with Lynch syndrome: a systematic review of the literature and meta-analysis. Genet Med 2019; 21 (10): 2167–2180. doi: 10.1038/s41436-019-0536-8.
8. Mahdy H, Casey MJ, Crotzer D. Endometrial cancer. [online]. Available from: http: //www.ncbi.nlm.nih.gov/books/NBK525981/.
9. Jones ER, O’Flynn H, Njoku K et al. Detecting endometrial cancer. Obstet Gynaecol 2021; 23 (2): 103–112. doi: 10.1111/tog.12722.
10. Tamura K, Kaneda M, Futagawa M et al. Genetic and genomic basis of the mismatch repair system involved in Lynch syndrome. Int J Clin Oncol 2019; 24 (9): 999–1011. doi: 10.1007/s10147-019-01494-y.
11. Wishart DS. Metabolomics for investigating physiological and pathophysiological processes. Physiol Rev 2019; 99 (4): 1819–1875. doi: 10.1152/physrev.00035. 2018.
12. Bhalla M, Mittal R, Kumar M et al. Metabolomics: a tool to envisage biomarkers in clinical interpretation of cancer. Curr Drug Res Rev 2023. doi: 10.2174/2589977516666230912120412.
13. Zahran F, Rashed R, Omran M et al. Study on urinary candidate metabolome for the early detection of breast cancer. Indian J Clin Biochem 2021; 36 (3): 319–329. doi: 10.1007/s12291-020-00905-6.
14. Njoku K, Sutton CJJ, Whetton AD et al. Metabolomic biomarkers for detection, prognosis and identifying recurrence in endometrial cancer. Metabolites 2020; 10 (8): 314. doi: 10.3390/metabo10080314.
15. Lawaetz AJ, Bro R, Kamstrup-Nielsen M et al. Fluorescence spectroscopy as a potential metabonomic tool for early detection of colorectal cancer. Metabolomics 2012; 8 (S1): 1–11. doi: 10.1007/s11306-011-0310-7.
16. Dubayová K, Luckova I, Sabo J et al. A novel way to monitor urine concentration: fluorescent concentration matrices. J Clin Diagn Res 2015; 9 (1): BC11–14. doi: 10.7860/JCDR/2015/8990.5441.
17. Gosnell ME, Anwer AG, Mahbub SB et al. Quantitative non-invasive cell characterisation and discrimination based on multispectral autofluorescence features. Sci Rep 2016; 6 (1): 23453. doi: 10.1038/srep23453.
18. Masilamani V, Al-Zhrani K, AlSalhi M et al. Cancer diagnosis by autofluorescence of blood components. J Lumin 2004; 109 (3–4): 143–154. doi: 10.1016/j.jlumin.2004.02.001.
19. Wu B, Gayen SK, Xu M. Fluorescence spectroscopy using excitation and emission matrix for quantification of tissue native fluorophores and cancer diagnosis. Int Soc Opt Eng 2014; 8926: 89261M. doi: 10.1117/12.2040 985.
20. Špaková I, Ferencakova M, Rabajdova M et al. Autofluorescence of breast cancer proteins. Curr Metabolomics 2018; 6 (1): 2–9. doi: 10.2174/2213235X05666170630144458.
21. Masilamani V, Vijmasi T, Al Salhi M et al. Cancer detection by native fluorescence of urine. J Biomed Opt 2010; 15 (5): 057003. doi: 10.1117/1.3486553.
22. Zvarík M, Martinicky D, Hunakova L et al. Fluorescence characteristics of human urine from normal individuals and ovarian cancer patients. Neoplasma 2013; 60 (5): 533–537. doi: 10.4149/neo_2013_069.
23. Drezek R, Sokolov K, Utzinger U et al. Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications. J Biomed Opt 2001; 6 (4): 385–396. doi: 10.1117/1.1413209.
24. Birková A, Valko-Rokytovská M, Hubková B et al. Strong dependence between tryptophan-related fluorescence of urine and malignant melanoma. Int J Mol Sci 2021; 22 (4): 1884. doi: 10.3390/ijms22041884.
25. Atif M, AlSalhi MS, Devanesan S et al. A study for the detection of kidney cancer using fluorescence emission spectra and synchronous fluorescence excitation spectra of blood and urine. Photodiagnosis Photodyn Ther 2018; 23: 40–44. doi: 10.1016/j.pdpdt.2018.05.012.
26. Dubayová K, Birková A, Lešo M et al. Visualization of the composition of the urinary fluorescent metabolome. Why is it important to consider initial urine concentration? Methods Appl Fluoresc 2023; 11 (4): 045004. doi: 10.1088/2050-6120/ace512.
27. Bell EM, Mainwaring WI, Bulbrook RD et al. Relationships between excretion of steroid hormones and tryptophan metabolites in patients with breast cancer. Am J Clin Nutr 1971; 24 (6): 694–698. doi: 10.1093/ajcn/24.6.694.
28. Perez-Castro L, Garcia R, Venkateswaran N et al. Tryptophan and its metabolites in normal physiology and cancer etiology. FEBS J 2023; 290 (1): 7–27. doi: 10.1111/febs.16245.
29. Peters MAM, Meijer C, Fehrmann RSN et al. Serotonin and dopamine receptor expression in solid tumours including rare cancers. Pathol Oncol Res 2020; 26 (3): 1539–1547. doi: 10.1007/s12253-019-00734-w.
30. Chang SK, Dawood MY, Staerkel G et al. Fluorescence spectroscopy for cervical precancer detection: is there variance across the menstrual cycle? J Biomed Opt 2002; 7 (4): 595–602. doi: 10.1117/1.1509753.
31. Li BH, Xie SS. Autofluorescence excitation-emission matrices for diagnosis of colonic cancer. World J Gastroenterol 2005; 11 (25): 3931–3934. doi: 10.3748/wjg.v11.i25.3931.
32. Dinges SS, Hohm A, Vandergrift LA et al. Cancer metabolomic markers in urine: evidence, techniques and recommendations. Nat Rev Urol 2019; 16 (6): 339–362. doi: 10.1038/s41585-019-0185-3.
33. Shao X, Wang K, Liu X et al. Screening and verifying endometrial carcinoma diagnostic biomarkers based on a urine metabolomic profiling study using UPLC-Q-TOF/MS. Clin Chim Acta 2016; 463: 200–206. doi: 10.1016/j.cca.2016.10.027.
34. Zhao H, Jiang Y, Liu Y et al. Endogenous estrogen metabolites as biomarkers for endometrial cancer via a novel method of liquid chromatography-mass spectrometry with hollow fiber liquid-phase microextraction. Horm Metab Res 2015; 47 (2): 158–164. doi: 10.1055/s-0034-1371865.
35. Liang SB, Fu LW. Application of single-cell technology in cancer research. Biotechnol Adv 2017; 35 (4): 443–449. doi: 10.1016/j.biotechadv.2017.04.001.
36. Dutta M, Singh B, Joshi M et al. Metabolomics reveals perturbations in endometrium and serum of minimal and mild endometriosis. Sci Rep 2018; 8 (1): 6466. doi: 10.1038/s41598-018-23954-7.
37. Vicente-Muñoz S, Morcillo I, Puchades-Carrasco L et al. Pathophysiologic processes have an impact on the plasma metabolomic signature of endometriosis patients. Fertil Steril 2016; 106 (7): 1733–1741.e1. doi: 10.1016/j.fertnstert.2016.09.014.
38. Karaer A, Tuncay G, Mumcu A et al. Metabolomics analysis of follicular fluid in women with ovarian endometriosis undergoing in vitro fertilization. Syst Biol Reprod Med 2019; 65 (1): 39–47. doi: 10.1080/19396368.2018.1478469. Epub 2018 May 28.
39. Vicente-Muñoz S, Morcillo I, Puchades-Carrasco L et al. Nuclear magnetic resonance metabolomic profiling of urine provides a noninvasive alternative to the identification of biomarkers associated with endometriosis. Fertil Steril 2015; 104 (5): 1202–1209. doi: 10.1016/j.fertnstert.2015.07.1149.
40. Domínguez F, Ferrando M, Díaz-Gimeno P et al. Lipidomic profiling of endometrial fluid in women with ovarian endometriosis†. Biol Reprod 2017; 96 (4): 772–779. doi: 10.1093/biolre/iox014.
41. Ramanujam N. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia 2000; 2 (1–2): 89–117. doi: 10.1038/sj.neo.7900077.
42. Anglesio MS, Papadopoulos N, Ayhan A et al. Cancer-associated mutations in endometriosis without cancer. N Engl J Med 2017; 376 (19): 1835–1848. doi: 10.1056/NEJMoa1614814.
43. Varma R, Rollason T, Gupta JK et al. Endometriosis and the neoplastic process. Reprod Camb Engl 2004; 127 (3): 293–304. doi: 10.1530/rep.1.00020.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2024 Issue 2
Most read in this issue
- Význam aberantní metylace DNA pro diagnostiku a terapii nádorových onemocnění
- Postižení pravostranných srdečních chlopní u pacientky s karcinoidovým syndromem – kazuistika a přehled literatury
- Možnosti zavedení časné nádorové regrese jako potenciálního prediktivního markeru do každodenní klinické praxe u pacientů s metastatickým kolorektálním karcinomem RAS divokého typu léčených cetuximabem – neintervenční observační studie
- Faktory ovplyvňujúce prežívanie pacientov a vývoj GvHD po alogénnej transplantácii krvotvorných buniek od HLA-identických súrodencov – skúsenosť jedného centra