Predictive testing in non-small cell lung carcinoma
Authors:
P. Dundr 1; R.- Matěj 1 3; K. Němejcová 1; M. Bártů 1; I. Stružinská 1
Authors‘ workplace:
Ústav patologie, 1. LF UK a VFN v Praze
1; Ústav patologie, 2. LF UK a FN Královské Vinohrady
2; Ústav patologie a molekulární medicíny, 2. LF UK a FTN Praha
3
Published in:
Klin Onkol 2021; 34(Supplementum 1): 29-34
Category:
Review
doi:
https://doi.org/10.48095/ccko2021S29
Overview
Background: Predictive testing is a crucial part of the complete diagnostic process of non-small cell lung cancer (NSCLC) and a necessary requirement in order to determine proper course of treatment. However, the possibilities of testing and the spectrum of examined markers are quickly evolving as a result of the progress in diagnostic and therapeutic possibilities, and as such it is necessary to regularly update the current guidelines to achieve proper standards of care in routine practice. Purpose: To provide a complex overview of the current problematics of predictive testing in NSCLC at a molecular level, considering also the evaluation of PD-L1 expression based on the international and national guidelines. To summarize the current state of predictive testing employed in NSCLC in the Czech Republic. Conclusion: Predictive testing in NSCLC is a part of routine diagnostic practice; however, as a result of the expanding spectrum of diagnostic and therapeutic possibilities, it is undergoing significant development. The existing method of the sequential testing of individual markers is becoming unsuitable; given the increasing number of potential predictors and complex molecular testing, the use of new generation sequencing appears to represent a more suitable solution. The immunohistochemical evaluation of PD-L1 expression is also a necessary part of predictive testing in NSCLC.
Keywords:
predictive testing – non-small cell lung carcinoma – driver mutations – PD-L1
Sources
1. Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Glob Health 2019; 85 (1): 8. doi: 10.5334/aogh.2419.
2. Yang P. Epidemiology of lung cancer prognosis: quantity and quality of life. Methods Mol Biol 2009; 471: 469–486. doi: 10.1007/978-1-59745-416-2_24.
3. Antonicelli A, Cafarotti S, Indini A et al. EGFR-targeted therapy for non-small cell lung cancer: focus on EGFR oncogenic mutation. Int J Med Sci 2013; 10 (3): 320–330. doi: 10.7150/ijms.4609.
4. Blackhall FH, Peters S, Bubendorf L et al. Prevalence and clinical outcomes for patients with alk-positive resected stage I to III adenocarcinoma: results from the European Thoracic Oncology Platform lungscape project. J Clin Oncol 2014; 32 (25): 2780–2787. doi: 10.1200/JCO.2013.54.5921.
5. Kerr KM, Thunnissen E, Dafni U et al. A retrospective cohort study of PD-l1 prevalence, molecular associations and clinical outcomes in patients with NSCLC: results from the European Thoracic Oncology Platform (ETOP) lungscape project. Lung Cancer 2019; 131: 95–103. doi: 10.1016/j.lungcan.2019.03.012.
6. Kalemkerian GP, Narula N, Kennedy EB. Molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: American Society of Clinical Oncology endorsement summary of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology clinical practice guideline update. J Oncol Pract 2018; 14 (5): 323–327. doi: 10.1200/JOP.18.00035.
7. Lindeman NI, Cagle PT, Aisner DL et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol 2018; 13 (3): 323–358. doi: 10.5858/arpa.2017- 0388-CP.
8. Lindeman NI, Cagle PT, Beasley MB et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol 2013; 8 (7): 823–859. doi: 10.1097/JTO.0b013e318290868f.
9. Lindeman NI, Cagle PT, Beasley MB et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Arch Pathol Lab Med 2013; 137 (6): 828–860. doi: 10.5858/arpa.2012-0720-OA.
10. Lindeman NI, Cagle PT, Beasley MB et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Mol Diagn 2013; 15 (4): 415–453. doi: 10.1016/j.jmoldx.2013.03.001.
11. Gubens MA, Davies M. NCCN guidelines updates: new immunotherapy strategies for improving outcomes in non-small cell lung cancer. J Natl Compr Canc Netw 2019; 17 (5.5): 574–578. doi: 10.6004/jnccn.2019. 5005.
12. Planchard D, Popat S, Kerr K et al. Metastatic non- -small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018; 29 (Suppl 4): iv192–iv237. doi: 10.1093/annonc/mdy275.
13. www.nccn.org.
14. https: //www.cap.org/protocols-and-guidelines/upcoming-cap-guidelines/pd-l1-testing-of-patients-with-lung-cancer-for-immunooncology-therapies
15. Lantuejoul S, Sound-Tsao M, Cooper WA et al. PD-11 testing for lung cancer in 2019: perspective from the IASLC Pathology Committee. J Thorac Oncol 2020; 15 (4): 499–519. doi: 10.1016/j.jtho.2019.12.107.
16. Skov BG, Skov T. Paired comparison of PD-l1 expression on cytologic and histologic specimens from malignancies in the lung assessed with PD-l1 IHC 28-8pharmDx and PD-11 IHC 22c3pharmDx. Appl Immunohistochem Mol Morphol 2017; 25 (7): 453–459. doi: 10.1097/PAI.0000000000000 540.
17. http: //patologie.info/standardy/39.
18. https: //www.linkos.cz/lekar-a-multidisciplinarni-tym/personalizovana-onkologie/prediktivni-markery/informace-o-siti-referencnich-laboratori-pro-vysetrovani-prediktivnich-markeru/.
19. https: //www.linkos.cz/lekar-a-multidisciplinarni-tym/diagnostika-a-lecba/modra-kniha-cos/aktualni-vydani-modre-knihy/26-36-prediktivni-vysetreni-solidnich-nadoru/
20. Matej R, Rohan Z, Nemejcova K et al. Molecular pathology of lung cancer in routine diagnostic practice: 2017 update. Cesk Patol 53 (4): 159–166.
21. http: //patologie.info/standardy/41.
22. http: //patologie.info/standardy/40.
23. Smeltzer MP, Wynes MW, Lantuejoul S et al. The international association for the study of lung cancer global survey on molecular testing in lung cancer. J Thorac Oncol 2020; 15 (9): 1434-1448.
24. Pennell NA, Arcila ME, Gandara DR et al. Biomarker testing for patients with advanced non-small cell lung cancer: real-world issues and tough choices. Am Soc Clin Oncol Educ Book 2019; 39: 531–542. doi: 10.1200/EDBK_237863.
25. Mosele F, Remon J, Mateo J et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO precision medicine working group. Ann Oncol 2020; 31 (11): 1491–1505. doi: 10.1016/j.annonc.2020.07.014.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2021 Issue Supplementum 1
Most read in this issue
- Lung cancer – dia nosis and early detection
- Surgical treatment of lung cancer
- Pokroky v léčbě malobuněčného karcinomu plic
- Future of lung cancer treatment