Oncogenic Viral Protein Interactions with p53 Family Proteins
Authors:
V. Brychtová; V. Hrabal; B. Vojtěšek
Authors‘ workplace:
Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno
Published in:
Klin Onkol 2019; 32(Supplementum 3): 72-77
Category:
Review
doi:
https://doi.org/10.14735/amko20193S
Overview
Background: Cellular transformation induced by oncogenic viruses is a complex process including viral molecules, host cells and environmental factors. Viruses alone are unable to reproduce and thus they need a host to use their signalling, proteosynthetic and metabolic pathways. One target host molecule is the p53 tumour suppressor. Viral proteins functionally inactivate p53 and deregulate the expression of proteins active during apoptosis, cell proliferation and DNA damage response. Hepatitis virus B HbX protein and hepatitis virus C proteins NS2 and NS5A interact with p53 and prevent its localisation to the nucleus and thus reduce its transcriptional activity. Another mechanism lies in elevated p53 degradation caused by the BZLF1 protein of the Epstein-Barr virus, the LANA protein of the Kaposi sarcoma virus and human papilloma virus E6. The Merkel cell polyomavirus large T antigen does not interact directly with p53, however it acts through downregulation of p53 mediated transcription. The tax protein of human T cell lymphotropic virus type 1 modifies p53 posttranslationally and thus blocks its interaction with other factors of transcription machinery. Due to its tumour suppressor function and role in the maintenance of the genome integrity, the p53 protein is one of the best studied proteins. Following this, evolutionary homologues with important developmental functions p63 and p73 are intensively studied as well. Their roles in oncogenesis have not been clarified yet.
Purpose: This review describes some of their known interactions with oncogenic viral proteins.
Keywords:
p53 – viruses – viral proteins – p63 – p73 – tumorigenesis
Sources
1. de Martel C, Ferlay J, Franceschi S et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 2012; 13(6): 607– 615. doi: 10.1016/ S1470-2045(12)70137-7.
2. Walboomers JM, Jacobs MV, Manos MM et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999; 189(1): 12– 19. doi: 10.1002/ (SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F.
3. McLaughlin-Drubin ME, Munger K. Viruses associated with human cancer. Biochim Biophys Acta 2008; 1782(3): 127– 150. doi: 10.1016/ j.bbadis.2007.12.005.
4. Fernandez AF, Esteller M. Viral epigenomes in human tumorigenesis. Oncogene 2010; 29(10): 1405– 1420. doi: 10.1038/ onc.2009.517.
5. Mesri EA, Feitelson MA, Munger K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe 2014; 15(3): 266– 282. doi: 10.1016/ j.chom.2014.02.011.
6. Tornesello ML, Annunziata C, Tornesello AL et al. Human oncoviruses and p53 tumor suppressor pathway deregulation at the origin of human cancers. Cancers (Basel) 2018; 10(7): E213. doi: 10.3390/ cancers10070213.
7. Tornesello ML, Buonaguro L, Buonaguro FM. An overview of new biomolecular pathways in pathogen-related cancers. Future Oncol 2015; 11(11): 1625– 1639. doi: 10.2217/ fon.15.87.
8. Lane DP. Cancer. p53, guardian of the genome. Nature 1992; 358(6381): 15– 16. doi: 10.1038/ 358015a0.
9. Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer 2009; 9(10): 749– 758. doi: 10.1038/ nrc2723.
10. Aloni-Grinstein R, Charni-Natan M, Solomon H et al. p53 and the viral connection: back into the future (double dagger). Cancers (Basel) 2018; 10(6): E178. doi: 10.3390/ cancers10060178.
11. Moore PS, Chang Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer 2010; 10(12): 878– 889. doi: 10.1038/ nrc2961.
12. Rous P. A Sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med 1911; 13(4): 397– 411. doi: 10.1084/ jem.13.4.397.
13. Burkitt D. A children’s cancer dependent on climatic factors. Nature 1962; 194: 232– 234. doi: 10.1038/ 194232a0.
14. Bouvard V, Baan R, Straif K et al. A review of human carcinogens – part B: biological agents. Lancet Oncol 2009; 10(4): 321– 322.
15. Feng H, Shuda M, Chang Y et al. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 2008; 319(5866): 1096– 1100. doi: 10.1126/ science.1152586.
16. MacDonald M, You J. Merkel cell polyomavirus: a new DNA virus associated with human cancer. Adv Exp Med Biol 2017; 1018: 35– 56. doi: 10.1007/ 978-981-10-5765-6_4.
17. Shuda M, Arora R, Kwun HJ et al. Human Merkel cell polyomavirus infection I. MCV T antigen expression in Merkel cell carcinoma, lymphoid tissues and lymphoid tumors. Int J Cancer 2009; 125(6): 1243– 1249. doi: 10.1002/ ijc.24510.
18. Shuda M, Feng H, Kwun HJ et al. T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc Natl Acad Sci USA 2008; 105(42): 16272– 16277. doi: 10.1073/ pnas.0806526105.
19. Borchert S, Czech-Sioli M, Neumann F et al. High-affinity Rb binding, p53 inhibition, subcellular localization, and transformation by wild-type or tumor-derived shortened Merkel cell polyomavirus large T antigens. J Virol 2014; 88(6): 3144– 3160. doi: 10.1128/ JVI.02916-13.
20. Park DE, Cheng J, Berrios C et al. Dual inhibition of MDM2 and MDM4 in virus-positive Merkel cell carcinoma enhances the p53 response. Proc Natl Acad Sci USA 2019; 116(3): 1027– 1032. doi: 10.1073/ pnas.1818798116.
21. Baer R, Bankier AT, Biggin MD et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 1984; 310(5974): 207– 211. doi: 10.1038/ 310207a0.
22. de Jesus O, Smith PR, Spender LC et al. Updated Epstein-Barr virus (EBV) DNA sequence and analysis of a promoter for the BART (CST, BARF0) RNAs of EBV. J Gen Virol 2003; 84(Pt 6): 1443– 1450. doi: 10.1099/ vir.0.19054-0.
23. Fries KL, Miller WE, Raab-Traub N. Epstein-Barr virus latent membrane protein 1 blocks p53-mediated apoptosis through the induction of the A20 gene. J Virol 1996; 70(12): 8653– 8659.
24. Sato Y, Kamura T, Shirata N et al. Degradation of phosphorylated p53 by viral protein-ECS E3 ligase complex. PLoS Pathog 2009; 5(7): e1000530. doi: 10.1371/ journal.ppat.1000530.
25. Cai Q, Guo Y, Xiao B et al. Epstein-Barr virus nuclear antigen 3C stabilizes Gemin3 to block p53-mediated apoptosis. PLoS Pathog 2011; 7(12): e1002418. doi: 10.1371/ journal.ppat.1002418.
26. Chang Y, Cesarman E, Pessin MS et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994; 266(5192): 1865– 1869. doi: 10.1126/ science.7997879.
27. Russo JJ, Bohenzky RA, Chien MC et al. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA 1996; 93(25): 14862– 14867. doi: 10.1073/ pnas.93.25.14862.
28. Samols MA, Hu J, Skalsky RL et al. Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi’s sarcoma-associated herpesvirus. J Virol 2005; 79(14): 9301– 9305. doi: 10.1128/ JVI.79.14.9301-9305.2005.
29. Chudasama P, Konrad A, Jochmann R et al. Structural proteins of Kaposi’s sarcoma-associated herpesvirus antagonize p53-mediated apoptosis. Oncogene 2015; 34(5): 639– 649. doi: 10.1038/ onc.2013.595.
30. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80(2): 293– 299. doi: 10.1016/ 0092-8674(95)90412-3.
31. Polyak K, Xia Y, Zweier JL et al. A model for p53-induced apoptosis. Nature 1997; 389(6648): 300– 305. doi: 10.1038/ 38525.
32. Gross A, Jockel J, Wei M et al. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J 1998; 17(14): 3878– 3885. doi: 10.1093/ emboj/ 17.14.3878.
33. Suzuki T, Isobe T, Kitagawa M et al. Kaposi’s sarcoma-associated herpesvirus-encoded LANA positively affects on ubiquitylation of p53. Biochem Biophys Res Commun 2010; 403(2): 194– 197. doi: 10.1016/ j.bbrc.2010.11.004.
34. Nakamura H, Li M, Zarycki J et al. Inhibition of p53 tumor suppressor by viral interferon regulatory factor. J Virol 2001; 75(16): 7572– 7582. doi: 10.1128/ JVI.75.16.7572-7582.2001.
35. Andrisani OM, Barnabas S. The transcriptional function of the hepatitis B virus X protein and its role in hepatocarcinogenesis (Review). Int J Oncol 1999; 15(2): 373– 379. doi: 10.3892/ ijo.15.2.373.
36. Elmore LW, Hancock AR, Chang SF et al. Hepatitis B virus X protein and p53 tumor suppressor interactions in the modulation of apoptosis. Proc Natl Acad Sci USA 1997; 94(26): 14707– 14712. doi: 10.1073/ pnas.94.26.14707.
37. Liu N, Liu Q, Yang X et al. Hepatitis B virus-upregulated LNC-HUR1 promotes cell proliferation and tumorigenesis by blocking p53 activity. Hepatology 2018; 68(6): 2130– 2144. doi: 10.1002/ hep.30098.
38. Vousden KH, Doniger J, DiPaolo JA et al. The E7 open reading frame of human papillomavirus type 16 encodes a transforming gene. Oncogene Res 1988; 3(2): 167– 175.
39. Doorbar J, Egawa N, Griffin H et al. Human papillomavirus molecular biology and disease association. Rev Med Virol 2015; 25 (Suppl 1): 2– 23. doi: 10.1002/ rmv.1822.
40. Zheng ZM, Baker CC. Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci 2006; 11: 2286– 2302.
41. Crook T, Tidy JA, Vousden KH. Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation. Cell 1991; 67(3): 547– 556. doi: 10.1016/ 0092-8674(91)90529-8.
42. Li X, Coffino P. High-risk human papillomavirus E6 protein has two distinct binding sites within p53, of which only one determines degradation. J Virol 1996; 70(7): 4509– 4516.
43. Oh ST, Longworth MS, Laimins LA. Roles of the E6 and E7 proteins in the life cycle of low-risk human papillomavirus type 11. J Virol 2004; 78(5): 2620– 2626. doi: 10.1128/ jvi.78.5.2620-2626.2004.
44. Yugawa T, Kiyono T. Molecular mechanisms of cervical carcinogenesis by high-risk human papillomaviruses: novel functions of E6 and E7 oncoproteins. Rev Med Virol 2009; 19(2): 97– 113. doi: 10.1002/ rmv.605.
45. Hamdane N, Juhling F, Crouchet E et al. HCV-induced epigenetic changes associated with liver cancer risk persist after sustained virologic response. Gastroenterology 2019; 156(8): 2313– 2329. doi: 10.1053/ j.gastro.2019.02.038.
46. Bühler S, Bartenschlager R. Promotion of hepatocellular carcinoma by hepatitis C virus. Dig Dis 2012; 30(5): 445– 452. doi: 10.1159/ 000341688.
47. McGivern DR, SM Lemon. Virus-specific mechanisms of carcinogenesis in hepatitis C virus associated liver cancer. Oncogene 2011; 30(17): 1969– 1983. doi: 10.1038/ onc.2010.594.
48. Bittar C, Shrivastava S, Bhanja Chowdhury J et al. Hepatitis C virus NS2 protein inhibits DNA damage pathway by sequestering p53 to the cytoplasm. PLoS One 2013; 8(4): e62581. doi: 10.1371/ journal.pone.0062581.
49. Ishido S, Hotta H. Complex formation of the nonstructural protein 3 of hepatitis C virus with the p53 tumor suppressor. FEBS Lett 1998; 438(3): 258– 262. doi: 10.1016/ s0014-5793(98)01312-x.
50. Lan KH, Sheu ML, Hwang SJ et al. HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene 2002; 21(31): 4801– 4811. doi: 10.1038/ sj.onc.1205589.
51. Majumder M, Ghosh AK, Steele R et al. Hepatitis C virus NS5A physically associates with p53 and regulates p21/ waf1 gene expression in a p53-dependent manner. J Virol 2001; 75(3): 1401– 1407. doi: 10.1128/ JVI.75.3.1401-1407.2001.
52. Goh PY, Tan YJ, Lim SP et al. Cellular RNA helicase p68 relocalization and interaction with the hepatitis C virus (HCV) NS5B protein and the potential role of p68 in HCV RNA replication. J Virol 2004; 78(10): 5288– 5298. doi: 10.1128/ jvi.78.10.5288-5298.2004.
53. Zane L, Yasunaga J, Mitagami Y et al. Wip1 and p53 contribute to HTLV-1 Tax-induced tumorigenesis. Retrovirology 2012; 9: 114. doi: 10.1186/ 1742-4690-9-114.
54. Pise-Masison CA, Mahieux R, Jiang H et al. Inactivation of p53 by human T-cell lymphotropic virus type 1 Tax requires activation of the NF-kappaB pathway and is dependent on p53 phosphorylation. Mol Cell Biol 2000; 20(10): 3377– 3386. doi: 10.1128/ mcb.20.10.3377-3386.2000.
55. Tabakin-Fix Y, Azran I, Schavinky-Kharpunsky Y et al. Functional inactivation of p53 by human T-cell leukemia virus type 1 Tax protein: mechanisms and clinical implications. Carcinogenesis 2006; 27(4): 673– 681. doi: 10.1093/ carcin/ bgi274.
56. Vogelstein B, Kinzler KW. Tumour-suppressor genes. X-rays strike p53 again. Nature 1994; 370(6486): 174– 175. doi: 10.1038/ 370174a0.
57. Yang A, Kaghad M, Wang Y et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 1998; 2(3): 305– 316.
58. Yang A, Walker N, Bronson R et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 2000; 404(6773): 99– 103. doi: 10.1038/ 35003607.
59. Kaghad M, Bonnet H, Yang A et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 1997; 90(4): 809– 819. doi: 10.1016/ s0092-8674(00)80540-1.
60. Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature 1979; 278(5701): 261– 263. doi: 10.1038/ 278261a0.
61. Accardi R, Fathallah I, Gruffat H et al. Epstein-Barr virus transforming protein LMP-1 alters B cells gene expression by promoting accumulation of the oncoprotein DeltaNp73alpha. PLoS Pathog 2013; 9(3): e1003186. doi: 10.1371/ journal.ppat.1003186.
62. Accardi R, Scalise M, Gheit T et al. IkappaB kinase beta promotes cell survival by antagonizing p53 functions through DeltaNp73alpha phosphorylation and stabilization. Mol Cell Biol 2011; 31(11): 2210– 2226. doi: 10.1128/ MCB.00964-10.
63. Sahu SK, Mohanty S, Kumar A et al. Epstein-Barr virus nuclear antigen 3C interact with p73: Interplay between a viral oncoprotein and cellular tumor suppressor. Virology 2014; 448: 333– 343. doi: 10.1016/ j.virol.2013.10.023.
64. Alisi A, Giambartolomei S, Cupelli F et al. Physical and functional interaction between HCV core protein and the different p73 isoforms. Oncogene 2003; 22(17): 2573– 2580. doi: 10.1038/ sj.onc.1206333.
65. Ben Khalifa Y, Teissier S, Tan MK et al. The human papillomavirus E6 oncogene represses a cell adhesion pathway and disrupts focal adhesion through degradation of TAp63beta upon transformation. PLoS Pathog 2011; 7(9): e1002256. doi: 10.1371/ journal.ppat.1002256.
66. Eldakhakhny S, Zhou Q, Crosbie EJ et al. Human papillomavirus E7 induces p63 expression to modulate DNA damage response. Cell Death Dis 2018; 9(2): 127. doi: 10.1038/ s41419-017-0149-6.
67. Gerlich WH, Robinson WS. Hepatitis B virus contains protein attached to the 5’ terminus of its complete DNA strand. Cell 1980; 21(3): 801– 809. doi: 10.1016/ 0092-8674(80)90443-2.
68. DeCaprio JA. Merkel cell polyomavirus and Merkel cell carcinoma. Philos Trans R Soc Lond B Biol Sci 2017; 372(1732): 20160276. doi: 10.1098/ rstb.2016.0276.
69. Bouchard MJ, Schneider RJ. The enigmatic X gene of hepatitis B virus. J Virol 2004; 78(23): 12725– 12734. doi: 10.1128/ JVI.78.23.12725-12734.2004.
70. Staskus KA, Sun R, Miller G et al. Cellular tropism and viral interleukin-6 expression distinguish human herpesvirus 8 involvement in Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. J Virol 1999; 73(5): 4181– 4187.
71. Raghu H, Sharma-Walia N, Veettil MW et al. Kaposi’s sarcoma-associated herpesvirus utilizes an actin polymerization-dependent macropinocytic pathway to enter human dermal microvascular endothelial and human umbilical vein endothelial cells. J Virol 2009; 83(10): 4895– 4911. doi: 10.1128/ JVI.02498-08.
72. D’Souza G, Burk RD, Zhong Y et al. Cervicovaginal human papillomavirus (HPV)-infection before and after hysterectomy: evidence of different tissue tropism for oncogenic and nononcogenic HPV types in a cohort of HIV-positive and HIV-negative women. Int J Cancer 2012; 131(6): 1472– 1478. doi: 10.1002/ ijc.27363.
73. Young LS, Murray PG. Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene 2003; 22(33): 5108– 5121. doi: 10.1038/ sj.onc.1206556.
74. Vrzalikova K, Sunmonu T, Reynolds G et al. Contribution of Epstein-Barr Virus Latent Proteins to the Pathogenesis of Classical Hodgkin Lymphoma. Pathogens 2018; 7(3): E59. doi: 10.3390/ pathogens7030059.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2019 Issue Supplementum 3
Most read in this issue
- Protein Ubiquitination Research in Oncology
- CRISPR-Cas9 as a Tool in Cancer Therapy
- Glycosylation as an Important Regulator of Antibody Function
- Uncommon EGFR Mutations in Non-Small Cell Lung Cancer and Their Impact on the Treatment