Prognostic Factors for Cervical Cancer
Authors:
L. Mouková 1; R. Nenutil 2; P. Fabian 2; J. Chovanec 1
Authors‘ workplace:
Oddělení gynekologické onkologie, Masarykův onkologický ústav, Brno
1; Oddělení onkologické patologie, Masarykův onkologický ústav, Brno
2
Published in:
Klin Onkol 2013; 26(2): 83-90
Category:
Review
Overview
Standardized gynecological oncological therapeutical guidelines are based on ordinary predictive factors, such as depth of stromal invasion, histopathological type of tumor, lymphovascular space invasion, lymph node metastases. Unfortunately, the power of these prognostic factors is not able to determine the safety of this procedure in the relation to disease recurrence in a group of patients who are indicated for conservative operations. This is the appropriate area for new, especially biomolecular prognostic factors (proteins: p63, TAp63, p16, p21, p27, COX-2, genes: hTERC, MYCC). Moreover, comprehensive evaluation of cervical cancer prognostic factors and assessment of new biomarkers of cancer can ease prediction of risk of spread outside primary localization and determine probability of disease recurrence. This information can help to individualize surgical, radiotherapeutic and chemotherapeutic treatment.
Key words:
carcinoma of the cervix – prognostic factors – lymphovascular space invasion – lymph node metastases – tumor size – protein – expression
Sources
1. Freitag P. Rizikové a prognostické faktory. In: Cibula D, Petruželka L et al (eds). Onkogynekologie. 1. vyd. Praha: Grada 2009: 400.
2. Jordan JA, Singer A, Jones H III et al (eds). The cervix. 2nd ed. Malden: Blackwell 2006.
3. Šafář P. Cervikální karcinom. Moderní gynekologie a porodnictví 2000; 9: 4.
4. Alvarez RD, Soong SJ, Kinney WK et al. Identification of prognostic factors and risk groups in patients found to have nodal metastasis at the time of radical hysterectomy for early-stage squamous carcinoma of the cervix. Gynecol Oncol 1989; 35(2): 130–135.
5. Raspagliesi F, Ditto A, Quattrone P et al. Prognostic Factors in microinvasive cervical squamous cell cancer: long-term results. Int J Gynecol Cancer 2005; 15(1): 88–93.
6. Östör AG, Rome RM. Micro-invasive squamous cell carcinoma of the cervix. A clinico-pathologic study of 200 cases with long-term follow-up. Int J Gynecol Cancer 1994; 4(4): 257–264.
7. Milam MR, Frumovitz M, Dos Reis R et al. Preoperative lymph-vascular space invasion in associated with nodal metastases in women with early-stage cevical cancer. Gynecol Oncol 2007; 106(1): 12–15.
8. Berek JS, Hacker NF, Fu YS et al. Adenocarcinoma of the uterine cervix: histologic variables associated with lymph node metastasis and survival. Obstet Gynecol 1985; 65(1): 46–52.
9. Lindahl B, Ranstam J, Willén R. Prospective malignancy grading of invasive squamous carcinoma of the uterine cervix. Prognostic significance in a long-term follow-up. Anticancer Res 2007; 27(4C): 2829–2832.
10. Graflund M, Sorbe B, Hussein A et al. The prognostic value of histopathologic grading parameters and microvessel density in patients with early squamous cell carcinoma of the uterine cervix. Int J Gynecol Cancer 2002; 12(1): 32–41.
11. Dundr P. Histopatologická klasifikace. In: Cibula D, Petruželka L et al (eds). Onkogynekologie. 1. vyd. Praha: Grada 2009: 394–399.
12. Yasuda S, Kjima A, Maeno Y et al. Poor prognosis of patients with stage Ib1 adenosquamous cell carcinoma of the uterine cervix with pelvic lymphonode metastasis. Kobe J Med Sci 2006; 52(1): 9–15.
13. Creasman WT, Kohler MF. Is lymph vascular space involvement an independent prognostic factor in early cervical cancer? Gynecol Oncol 2004; 92(2): 525–529.
14. Delgado G. Lymphovascular space involvement in cervical cancer: an independent risk factor. Gynecol Oncol 1998; 68(3): 219.
15. Delgado G, Bundy B, Zaino R et al. Prospective surgical-pathologic study of disease-free interval in patients with stage Ib squamous carcinoma of the cervix: a Gynecologic Oncology Group study. Gynecol Oncol 1990; 38(3): 352–357.
16. Morice P, Piovesan P, Rey A et al. Prognostic value of lymphovascular space invasion determined with hematoxylin-eosin staining in early cervical carcinoma: results of a multivariate analysis. Ann Oncol 2003; 14(10): 1511–1517.
17. Roman LD, Felix JC, Muderspach LI et al. Influence of quality of lymphovascular space invasion on the risk of nodal metastases in women with early stage squamous cancer of the cervix. Gynecol Oncol 1998; 68(3): 220–225.
18. Rob L, Svoboda B, Robová H et al. Guideline gynekologických zhoubných nádorů 2004/2005: Primární komplexní léčba operabilních stádií zhoubných nádorů děložního hrdla. Oncogynekologie.com. http://www.onkogynekologie.com/wp-content/uploads/2011/03/C53.pdf.
19. Cantu De León D, Lopez-Graniel C, Frias Mendivil M et al. Significance of microvascular density (MVD) in cervical cancer recurrence. Int J Gynecol Cancer 2003; 13(6): 856–862.
20. Kim YT, Zhao M. Abberant cell cycle regulation in cervical carcinoma. Yonsei Med J 2005; 46(5): 597–613.
21. Bahnassy AA, Zekri AR, Saleh M et al. The possible of cell cycle regulators in multistep process of HPV-asociated cervical carcinoma. BMC Clin Pathol 2007; 7: 4.
22. van de Putte G, Holm R, Lie AK et al. Expression of p27, p21 and p16 protein in early squamous cervical cancer and its relation to prognosis. Gynecol Oncol 2003; 89(1): 140–147.
23. Chen TP, Chen cm, Chang HW et al. Increased expression of SKP2 and phospho-MAPK/ERK1/2 and decreased expression of p27 during tumor progression of cervical neoplasia. Gynecol Oncol 2007; 104(3): 516–523.
24. Dellas A, Schultheiss E, Leivas MR et al. Association of p27Kip1, cycline E and c-MYC expression with progression and prognosis in HPV-positive cervical neoplasms. Anticancer Res 1998; 18(6A): 3991–3998.
25. Goff BA, Sallin J, Garcia R et al. Evaluation of p27 in preinvasive and invasive malignancies of the cervix. Gynecol Oncol 2003; 88(1): 40–44.
26. Huang LW, Chou YY, Chao SL et al. p53 and p21 expression in precancerous lesions and carcinomas of the uterine cervix: overexpression of p53 predicts poor disease outcome. Gynecol Oncol 2001; 83(2): 348–354.
27. Yee C, Krishnan-Hewlett I, Baker CC et al. Presence and expression of human papillomavirus sequences in human cervical cell lines. Am J Pathol 1985; 119(3): 361–366.
28. Ahn WS, Bae SM, Lee KH et al. Recombinant adenovirus-p53 gene transfer and cell-specific growth supression of human cervical cancer cells in vitro and in vivo. Gynecol Oncol 2004; 92(2): 611–621.
29. Gross GE, Barraso R (eds). Human papilloma virus infection: A clinical atlas. Ullstein: Mosby 1997.
30. Grace VM, Shalini JV, Sree Lekha TT et al. Co-overexpression of p53 and bcl-2 protein in HPV-induced squamous cell carcinoma of the uterine cervix. Gynecol Oncol 2003; 91(1): 51–58.
31. Melino G. p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ 2011; 18(9): 1487–1499. doi:10.1038.81.
32. Bergholz J, Xiao ZX. Role of p63 in Development Tumorigenesis and Cancer Progression. Cancer Microenviron, 2012. www.ncbi.nlm.nih.gov/pubmed/22847008.
33. Houghton O, McCluggage WG. The expression and diagnostic utility of p63 in the female genital tract. Adv Anat Pathol 2009; 16(5): 316–321.
34. Distefano M, Ferrandina G, Smaniotto D et al. Concomitant radiochemotherapy plus surgery in locally advanced cervical cancer: update of clinical outcome and cyclooxygenase-2 as predictor of treatment susceptibility. Oncology 2004; 67(2): 103–111.
35. Ferrandina MG, Lauriola L, Distefano M et al. Increased cyclooxygenase-2 (COX-2) expression is associated with chemotherapy resistance and poor survival in cervical cancer patients. J Clin Oncol 2002; 20(4): 973–981.
36. Ferrandina G, Lauriola L, Zannooni GF et al. Expression of cyclooxygenase-2 (COX-2) in tumor and stroma compartments in cervical cancer: clinical implications. Br J Cancer 2002; 87(10): 1145–1152.
37. Chen YJ, Wang LS, Wang PH et al. High cyclooxygenase-2 expresion in cervical adenocarcinoma. Gynecol Oncol 2003; 88(3): 379–385.
38. Kim MH, Seo SS, Song YS et al. Expression of cyclooxygenase-1 and -2 associated with expression of VEGF in primary cervical cancer and metastatic lymph nodes. Gynecol Oncol 2003; 90(1): 83–90.
39. Lebrecht A, Ludwig E, Huber A et al. Serum vascular endothelial growth factor and serum leptin in patients with cervical cancer. Gynecol Oncol 2002; 85(1): 32–35.
40. Lee JS, Kim HS, Jung JJ et al. Expression of vascular endothelial growth factor in adenocarcinomas of the uterine cervix and Its relation to angioenesis and p53 and c-erb-2 protein expression. Gynecol Oncol 2002; 85(3): 469–475.
41. Kisser A, Weich HA, Bandner G et al. Mutant p53 potentiates protein kinase C induction of vascular endothelial growth factor expression. Oncogene 1994; 9(3): 963–969.
42. Kim JW, Kim HS, Kim IK et al. Transforming growth factor-beta 1 induces apoptosis through down-regulation of c-MYC gene and overexpression of p27Kip1 protein in cervical carcinoma. Gynecol Oncol 1998; 69(3): 230–236.
43. Kwasniewska A, Postawski K, Gozdzicka-Jozefiak A et al. Estrogen and progesterone receptor expression in HPV-positive and HPV-negative cervical carcinomas. Oncol Rep 2011; 26(1): 153–160.
44. Monsonego J, Magdelenat H, Catalan F et al. Estrogen and progesterone receptors in cervical human papillomavirus related lesions. Int J Cancer 1991; 48(4): 533–539.
45. Webster K, Taylor A, Gaston K. Oestrogen and progesterone increase the levels of apoptosis induced by the human papillomavirus type E2 and E7 proteins. J Gen Virol 2001; 82(Pt 1): 201–213.
46. Guijon FB, Greulich-Bode K, Paraskevas M et al. Premalignant cervical lesions are characterized by dihydrofolate reductase gene amplification and c-MYC overexpression: possible biomarkers. J Low Genit Tract Dis 2007; 11(4): 265–272.
47. Li Y, Ye F, Lü WG et al. Detection of human telomerase RNA gene in cervical cancer and precancerous lesions: comparison with cytological and human papillomavirus DNA test findings. Int J Gynecol Cancer 2010; 20(4): 631–637.
48. Gao L, Zhu Y, Liu SP et al. Detection of human telomerase RNA component gene by fluorescent in situ hybridization for screening of cervical lesions. Zhonghua Bing Li Xue Za Zhi 2011; 40(2): 104–107.
49. Li YB, Wulan N, Liu ZH et al. Amplification and clinical significance of hTERC gene in the cervical exfoliated cells from natural population in Shenzhen. Zhonghua Liu Xing Bing Xue Za Zhi 2009; 30(9): 946–950.
50. Heselmeyer K, Macville M, Schröck E et al. Advanced-stage cervical carcinomas are defined by a recurent pattern of chromosomal aberration revealing high genetic instability and a consistent gain of chromosome arm 3q. Genes Chromosomes Cancer 1997; 19(4): 233–240.
51. Veldman T, Liu X, Yuan H et al. Human papillomavirus E6 and MYC proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc Natl Acad Sci USA 2003; 100(14): 8211–8216.
52. Abba MC, Laguens RM, Dulout FN et al. The c-MYC activation in cervical carcinomas and HPV 16 infections. Mutat Res 2004; 557(2): 151–158.
53. Golijow CD, Abba MC, Mourón SA et al. c-MYC gene amplification detected in preinvasive inraepithelial cervical lesions. Int J Gynecol Cancer 2001; 11(6): 462–465.
54. Riou GF, Bourhis J, Le MG. The c-MYC proto-oncogene in invasive carcinomas of the uterine cervix: clinical relevance of overexpression in early stages of the cancers. Anticancer Res 1990; 10(5A): 1225–1231.
55. Iwasaka T, Yokoyama M, Oh-uchida M et al. Detection of human papillomavirus genome and analysis of expresson of c-MYC and Ha-ras oncogenes in invasie cervical carcinomas. Gynecol Oncol 1992; 46(3): 298–303.
56. Ngan HY, Cheung AN, Liu SS et al. Abnormal expression of pan-ras, c-MYC and tp53 in squamous cell carcinoma of cervix: correlation with HPV and prognosis. Oncol Rep 2001; 8(3): 556–561.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2013 Issue 2
Most read in this issue
- Prognostic Factors for Cervical Cancer
- Spontaneous Remission of Acute Myeloid Leukemia – a Single Center Case Reports
- A Case Report: Neutropenia Grade IV and Febrile Neutropenia in a Metastatic Breast Cancer Patient Treated With Palliative Chemotherapy Cyclophosphamide/Myocet
- The Role of Radiotherapy in the Treatment of Malignant Lymphomas – Recommendations of the Czech Lymphoma Study Group